# Volume of Frustum (Truncated Cone)

1. Jan 6, 2008

If there is a frustum with base radii of 1.75 and 1.25 inches, and a height of 6 inches, what is the volume? I tried to use the V=|(b1*h1)/3-(b2*h2)/3)| from the Wikipedia page, but h2 is unknown. I get an answer of 42.41 in^3. Is this correct?

Please use basic calculus as that is all I have learned.

Last edited: Jan 6, 2008
2. Jan 6, 2008

### Vid

Think of the circles x^2+y^2 = (1.75)^2 z=0 and x^2+y^2 = (1.25)^2 z=6. Left y = 0. This gives us two points from our equations (1.75, 0, 0) and (1.25, 0 ,6). Now we make a parametric equations for the line going through these two points. v = (-.5,0,6)
r = Po + t*v
x = 1.75 - .5t
y = 0
z = 6t

We want x and y to be zero so we can solve for z. 1.75 = .5t t = 3.5

z = 6*(3.5) = 21. So the total height of the cone if it weren't missing anything would be 21. Find the volume for that cone then subtract out the volume of the cone with height 14 and base 1.25.

3. Jan 6, 2008

Thanks.

4. Jan 6, 2008

### Vid

I just realized a much simpler solution using similar triangles.

6/.5 = x/1.75 x = 12*1.75 = 21.

5. Jan 6, 2008

Yea, that what I ended up doing.
x/1.25=(x+6)/1.75

6. Jan 13, 2008

### ssd

V=(h/3)*[A1+A2+sqrt(A1*A2)],
h = height, A1 and A2 are areas of the top and bottom circles.
It is not tough to find the formula using simple definite integral.