Petar Mali
- 283
- 0
I need help in understanding this problem.
Equation of sphere in n-dimensional space is:
x^2_1+x^2_2+...+x^2_n=R^2
We serch volume as V=C_nR^n. Why? Perhaps its analogy with CR^3.
Now we calculate this integral
I=\int^{\infty}_{-\infty}dx_1\int^{\infty}_{-\infty}dx_2\int^{\infty}_{-\infty}dx_3...\int^{\infty}_{-\infty}dx_ne^{-a(x^2_1+x^2_2+...+x^2_n)}
Why we do this?
And we get (\frac{\pi}{a})^{\frac{N}{2}}
And then
I=\int dV_n e^{-ar^2}
we get
V_n=\frac{(\pi)^{\frac{N}{2}}}{\Gamma(\frac{N}{2}+1)}R^n
Can someone tell me idea of all this. Thanks
Equation of sphere in n-dimensional space is:
x^2_1+x^2_2+...+x^2_n=R^2
We serch volume as V=C_nR^n. Why? Perhaps its analogy with CR^3.
Now we calculate this integral
I=\int^{\infty}_{-\infty}dx_1\int^{\infty}_{-\infty}dx_2\int^{\infty}_{-\infty}dx_3...\int^{\infty}_{-\infty}dx_ne^{-a(x^2_1+x^2_2+...+x^2_n)}
Why we do this?
And we get (\frac{\pi}{a})^{\frac{N}{2}}
And then
I=\int dV_n e^{-ar^2}
we get
V_n=\frac{(\pi)^{\frac{N}{2}}}{\Gamma(\frac{N}{2}+1)}R^n
Can someone tell me idea of all this. Thanks