The Von Neumann entropy is [tex]\mathcal{S}(|\psi\rangle) = -Tr[\rho_a ln \rho a] [/tex]. The linear entropy [tex]S_L = \frac{l}{l-1}(1 - Tr[\rho_a^2])[/tex] For l =2 the linear entropy is written [tex]4Det(\rho_A)[/tex] which is also called the tangle [tex]\tau[/tex]. I understand this just fine, I can show that. Now it says the Von Neumann can be written:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\mathcal{S}(|\psi\rangle) = -xln_{2}x - (1-x)ln_{2}(1-x) [/tex] where [tex] x = (1+\sqrt{1-\tau})/2[/tex]

I don't know how to show this last step? Anyone offer any insight? This is for a 2-dimensional case if that isn't clear from the above.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Von Neumann entropy in terms of the tangle

**Physics Forums | Science Articles, Homework Help, Discussion**