A Wald's Abstract Index Notation: Explaining T^{acde}_b

madsmh
Messages
32
Reaction score
2
TL;DR Summary
Confusion by the abstract index notation introduced in Wald's General Relativity.
In the second paragraph on page 25 of Wald's General Relativity he rewrites T^{acde}_b as g_{bf}g^{dh} g^{ej}T^{afc}_{hj} . Can anyone explain this? I am confused by the explantion given in the book. Especially puzzling is that the inverse of g seems to be applied twice, which I can't make sese of.

Mads

IMG_0338.jpg
 
Physics news on Phys.org
The inverse metric is applied twice to raise the last two indices. The metric is used once to lower the second index.

Also note that the index horizontal placement is important.
 
This isn't particularly to do with abstract index notation - it applies in all tensor index notations. You do need to pay attention to which index is being contracted over and the order of indices is important. But all that's happening here is that the metric is being used to lower two of the indices and the inverse metric is being used to raise one. That's just what the metric does. Just as the metric in ##g_{ab}v^b## lowers the ##b## to give you the one form ##v_a##, the metric applied to any tensor lowers the repeated index - so ##g_{ad}T^{bcdefg}## lowers the ##d## to give you ##T^{bc}{}_a{}^{efg}##. Note that the repeated index ##d## was replaced with the other index on the metric because we summed over the dummy index.

In the cited section Wald is just randomly lowering a couple of indices and raising one to show you can do it to multiple indices at once.

Quote my post to see a way to do index notation with correct positioning in ##\LaTeX##.
 
  • Like
Likes madsmh and cianfa72
Ibix said:
In the cited section Wald is just randomly lowering a couple of indices and raising one to show you can do it to multiple indices at once.
Lowering one and raising two.
 
  • Like
Likes cianfa72 and Ibix
Orodruin said:
Lowering one and raising two.
🤪
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top