A Wald's Abstract Index Notation: Explaining T^{acde}_b

madsmh
Messages
32
Reaction score
2
TL;DR Summary
Confusion by the abstract index notation introduced in Wald's General Relativity.
In the second paragraph on page 25 of Wald's General Relativity he rewrites T^{acde}_b as g_{bf}g^{dh} g^{ej}T^{afc}_{hj} . Can anyone explain this? I am confused by the explantion given in the book. Especially puzzling is that the inverse of g seems to be applied twice, which I can't make sese of.

Mads

IMG_0338.jpg
 
Physics news on Phys.org
The inverse metric is applied twice to raise the last two indices. The metric is used once to lower the second index.

Also note that the index horizontal placement is important.
 
This isn't particularly to do with abstract index notation - it applies in all tensor index notations. You do need to pay attention to which index is being contracted over and the order of indices is important. But all that's happening here is that the metric is being used to lower two of the indices and the inverse metric is being used to raise one. That's just what the metric does. Just as the metric in ##g_{ab}v^b## lowers the ##b## to give you the one form ##v_a##, the metric applied to any tensor lowers the repeated index - so ##g_{ad}T^{bcdefg}## lowers the ##d## to give you ##T^{bc}{}_a{}^{efg}##. Note that the repeated index ##d## was replaced with the other index on the metric because we summed over the dummy index.

In the cited section Wald is just randomly lowering a couple of indices and raising one to show you can do it to multiple indices at once.

Quote my post to see a way to do index notation with correct positioning in ##\LaTeX##.
 
  • Like
Likes madsmh and cianfa72
Ibix said:
In the cited section Wald is just randomly lowering a couple of indices and raising one to show you can do it to multiple indices at once.
Lowering one and raising two.
 
  • Like
Likes cianfa72 and Ibix
Orodruin said:
Lowering one and raising two.
🤪
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...

Similar threads

Back
Top