Wallis' Formula and Quantum Mechanics

In summary, there is a connection between Wallis' formula for pi and quantum mechanics, as evidenced by a geometric proof of the formula and functions for smooth movement between quantized log and zetas. Further research is being done to explore potential applications in art and other fields.
  • #1
stevendaryl
Staff Emeritus
Science Advisor
Insights Author
8,938
2,945
Does anybody know what the connection is between Wallis' formula for ##\pi## and quantum mechanics? There was an article about it:
https://www.eurekalert.org/pub_releases/2015-11/aiop-ndo110915.php
but like all articles for the lay public, all the details were left out.

Wallis' formula is:

##\frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} ...##

I've always thought there should be a geometric proof of this, say approximating a semicircle by rectangles of some sort, but the proofs I've seen are analytic.
 
Mathematics news on Phys.org
  • #3
3Blue1Brown has a video about a geometric proof of the Wallis product:
 
  • Like
Likes stevendaryl and DrClaude
  • #4
3blue1brown rocks. Not sure about dropping the 0 though. Didn't get all the way through.

A while back (didn't finish it yet), I started working on a zeta/log chart, with a few switching formulas between them (and I was thinking about using it as a quantization structure for some art). The Wallis Product pops up (a few thingies down):

Since, [itex]log(\frac{x}{y}) =\sum\limits_{n=1}^{\infty} \, (\frac{x-y}{x})^n \cdot \frac{1}{n} [/itex], if you set y=x-1...

[tex]
\begin{array}{|c|c|c|c|}
\hline & \frac{\zeta(1)}{1} & \frac{\zeta(2)}{2}& \frac{\zeta(3)}{3}& \frac{\zeta(4)}{4} & \frac{\zeta(5)}{5}&\dots\\
\hline \lim\limits_{x\to 1^+} log(\frac{x}{x-1}) & \frac{1}{1 \cdot 1^1} & \frac{1}{2 \cdot 1^2} & \frac{1}{3 \cdot 1^3}& \frac{1}{4 \cdot 1^4}& \frac{1}{5 \cdot 1^5}&\dots\\
\hline log (\frac{2}{1}) & \frac{1}{1 \cdot 2^1} & \frac{1}{2 \cdot 2^2} & \frac{1}{3 \cdot 2^3}& \frac{1}{4 \cdot 2^4}& \frac{1}{5 \cdot 2^5}&\dots\\
\hline log (\frac{3}{2}) & \frac{1}{1 \cdot 3^1} & \frac{1}{2 \cdot 3 ^2} & \frac{1}{3 \cdot 3^3}& \frac{1}{4 \cdot 3^4}& \frac{1}{5 \cdot 3^5} &\dots\\
\hline log (\frac{4}{3}) & \frac{1}{1 \cdot 4^1} & \frac{1}{2 \cdot 4^2} & \frac{1}{3 \cdot 4^3}& \frac{1}{4 \cdot 4^4}& \frac{1}{5 \cdot 4^5} &\dots\\
\hline log (\frac{5}{4}) & \frac{1}{1 \cdot 5^1} & \frac{1}{2 \cdot 5^2} & \frac{1}{3 \cdot 5^3}& \frac{1}{4 \cdot 5^4}& \frac{1}{5 \cdot 5^5} &\dots\\
\hline \dots &\dots & \dots&\dots &\dots&\dots&\dots\\
\hline
\end{array}
[/tex]

A couple of functions for smooth movement between quantized log and zetas:
Log shift function, with x ? N a ? R : [0,1].. note that it's 2a/ 2n, so I drop the 2:

[itex]log (\frac{x}{x-1}) \to log(\frac{x+1}{x}) \,= \, f(x,a) =\, \sum\limits_{n=1}^\infty \frac{1}{n\cdot x^n} - \frac{a}{n \cdot x^{2n}}[/itex]

Shift logs by a=1:

[tex]
\begin{array}{|c|c|c|c|}
\hline & \frac{\zeta(1)}{1} & -\frac{\zeta(2)}{2}& \frac{\zeta(3)}{3}& -\frac{\zeta(4)}{4} & \frac{\zeta(5)}{5}&\dots\\
\hline log(\frac{2}{1}) & \frac{1}{1 \cdot 1^1} & -\frac{1}{2 \cdot 1^2} & \frac{1}{3 \cdot 1^3}& -\frac{1}{4 \cdot 1^4}& \frac{1}{5 \cdot 1^5}&\dots\\
\hline log (\frac{3}{2}) & \frac{1}{1 \cdot 2^1} & -\frac{1}{2 \cdot 2^2} & \frac{1}{3 \cdot 2^3}& -\frac{1}{4 \cdot 2^4}& \frac{1}{5 \cdot 2^5}&\dots\\
\hline log (\frac{4}{3}) & \frac{1}{1 \cdot 3^1} &- \frac{1}{2 \cdot 3 ^2} & \frac{1}{3 \cdot 3^3}& -\frac{1}{4 \cdot 3^4}& \frac{1}{5 \cdot 3^5} &\dots\\
\hline log (\frac{5}{4}) & \frac{1}{1 \cdot 4^1} & -\frac{1}{2 \cdot 4^2} & \frac{1}{3 \cdot 4^3}& -\frac{1}{4 \cdot 4^4}& \frac{1}{5 \cdot 4^5} &\dots\\
\hline log (\frac{6}{5}) & \frac{1}{1 \cdot 5^1} & -\frac{1}{2 \cdot 5^2} & \frac{1}{3 \cdot 5^3}& -\frac{1}{4 \cdot 5^4}& \frac{1}{5 \cdot 5^5} &\dots\\
\hline \dots &\dots & \dots&\dots &\dots&\dots&\dots\\
\hline
\end{array}
[/tex]

zeta to eta shift function, s ?N, a ? R: [0,1], dropped the 2 from 2a/2n again!:

[itex] \frac{\zeta(s)}{s} \to \frac{\eta(s)}{s} \, = g(s,a) = \, \sum\limits_{n=1}^\infty \frac{1}{s \cdot n ^ s} - \frac{a}{s \cdot (2n)^ s}[/itex]

Gets you here:
[tex]
\begin{array}{|c|c|c|c|}
\hline & \frac{\eta(1)}{1} & -\frac{\eta(2)}{2}& \frac{\eta(3)}{3}& -\frac{\eta(4)}{4} & \frac{\eta(5)}{5}&\dots\\
\hline log(\frac{2}{1}) & \frac{1}{1 \cdot 1^1} & -\frac{1}{2 \cdot 1^2} & \frac{1}{3 \cdot 1^3}& -\frac{1}{4 \cdot 1^4}& \frac{1}{5 \cdot 1^5}&\dots\\
\hline - log (\frac{3}{2}) & -\frac{1}{1 \cdot 2^1} & \frac{1}{2 \cdot 2^2} &- \frac{1}{3 \cdot 2^3}& \frac{1}{4 \cdot 2^4}& -\frac{1}{5 \cdot 2^5}&\dots\\
\hline log (\frac{4}{3}) & \frac{1}{1 \cdot 3^1} &- \frac{1}{2 \cdot 3 ^2} & \frac{1}{3 \cdot 3^3}& -\frac{1}{4 \cdot 3^4}& \frac{1}{5 \cdot 3^5} &\dots\\
\hline -log (\frac{5}{4}) &- \frac{1}{1 \cdot 4^1} & \frac{1}{2 \cdot 4^2} &- \frac{1}{3 \cdot 4^3}& \frac{1}{4 \cdot 4^4}& -\frac{1}{5 \cdot 4^5} &\dots\\
\hline log (\frac{6}{5}) & \frac{1}{1 \cdot 5^1} & -\frac{1}{2 \cdot 5^2} & \frac{1}{3 \cdot 5^3}& -\frac{1}{4 \cdot 5^4}& \frac{1}{5 \cdot 5^5} &\dots\\
\hline \dots &\dots & \dots&\dots &\dots&\dots&\dots\\
\hline
\end{array}
[/tex]

[tex]log(\frac{2}{1}) -log (\frac{3}{2}) + log (\frac{4}{3}) -log (\frac{5}{4}) +... \, = \,log(\frac{2}{1}) + log (\frac{2}{3}) + log (\frac{4}{3}) +log (\frac{4}{5}) +log (\frac{6}{5}) +... [/tex]

From the above, from the Wallis product for pi:
[tex] \sum\limits_{n=1}^\infty \,-1^{n+1} \, \cdot \frac{\eta{(n)}}{n} \, = \, log(\frac{\pi}{2})[/tex] I kept on going, because I thought that perhaps I could make a quantized framework for some art- connections between adjacent points in space would be mapped x to zeta, y to log, z to zeta/eta depth (determined by [itex]1-2^{1-s}[/itex])... not finished, because I have to do real work too.

When we do a zeta to eta conversion, we lose log(2), and are adding different logs together to get log (pi/4):

[tex]
\begin{array}{|c|c|c|c|}
\hline & 0\cdot \frac{ \zeta(1)}{1} & - \frac{1}{2} \cdot \frac{\zeta(2)}{2} & \frac{3}{4} \cdot \frac{\zeta(3)}{3} & -\frac{7}{8} \cdot \frac {\zeta(4)}{4} & \frac{15}{16} \cdot \frac{\zeta(5)}{5} & \dots\\
\hline -log(\frac{9}{8}) & 0\cdot\frac{1}{1 \cdot 1^1} & - \frac{1}{2} \cdot\frac{1}{2 \cdot 1^2} &\frac{3}{4} \cdot \frac{1}{3 \cdot 1^3}& -\frac{7}{8} \cdot \frac{1}{4 \cdot 1^4}&\frac{15}{16} \cdot \frac{1}{5 \cdot 1^5}&\dots\\
\hline -log (\frac{5^2}{24}) & 0\cdot\frac{1}{1 \cdot 2^1} & - \frac{1}{2} \cdot\frac{1}{2 \cdot 2^2} &\frac{3}{4} \cdot \frac{1}{3 \cdot 2^3}&-\frac{7}{8} \cdot \frac{1}{4 \cdot 2^4}& \frac{15}{16} \cdot \frac{1}{5 \cdot 2^5}&\dots\\
\hline -log (\frac{7^2}{48}) &0\cdot \frac{1}{1 \cdot 3^1} &- \frac{1}{2} \cdot\frac{1}{2 \cdot 3 ^2} &\frac{3}{4} \cdot \frac{1}{3 \cdot 3^3}& -\frac{7}{8} \cdot \frac{1}{4 \cdot 3^4}& \frac{15}{16} \cdot \frac{1}{5 \cdot 3^5} &\dots\\
\hline -log (\frac{9^2}{80}) &0\cdot \frac{1}{1 \cdot 4^1} &- \frac{1}{2} \cdot \frac{1}{2 \cdot 4^2} &\frac{3}{4} \cdot \frac{1}{3 \cdot 4^3}&-\frac{7}{8} \cdot \frac{1}{4 \cdot 4^4}& \frac{15}{16} \cdot \frac{1}{5 \cdot 4^5} &\dots\\
\hline- log (\frac{11^2}{120}) &0\cdot \frac{1}{1 \cdot 5^1} & - \frac{1}{2} \cdot\frac{1}{2 \cdot 5^2} &\frac{3}{4} \cdot \frac{1}{3 \cdot 5^3}& -\frac{7}{8} \cdot \frac{1}{4 \cdot 5^4}& \frac{15}{16} \cdot \frac{1}{5 \cdot 5^5} &\dots\\
\hline \dots &\dots & \dots&\dots &\dots&\dots&\dots\\
\hline
\end{array}
[/tex]

I got to the point where subsequent zeta/eta conversions add depth, have log charts, etc. so they can be stacked. It's written on paper though... and needs to be completed. But I ended up working on something else because this computer was a gift from Keith Anderson in the fractal entertainment industry (Fractaled Visions), so I feel like I should work on fractals. A bit.
 
Last edited:

1. What is Wallis' Formula and how is it related to Quantum Mechanics?

Wallis' Formula is a mathematical equation that describes the relationship between the gamma function and the sine function. It is often used in quantum mechanics to calculate probabilities and amplitudes of quantum states.

2. How was Wallis' Formula discovered?

Wallis' Formula was first discovered by English mathematician John Wallis in the 17th century. He derived it as a generalization of an earlier formula by French mathematician Pierre de Fermat.

3. What are the main applications of Wallis' Formula in Quantum Mechanics?

Wallis' Formula is commonly used in quantum mechanics to calculate the transition amplitudes between different quantum states, as well as to determine the probabilities of different outcomes in quantum measurements.

4. Can Wallis' Formula be extended to higher dimensions?

Yes, Wallis' Formula can be extended to higher dimensions. In fact, there are several generalizations of the formula that have been developed for use in quantum mechanics in higher dimensions.

5. Is Wallis' Formula still relevant in modern quantum mechanics?

Yes, Wallis' Formula is still widely used in modern quantum mechanics, particularly in the field of quantum information and computation. It is also an important tool for understanding and solving problems in quantum field theory.

Similar threads

Replies
6
Views
924
  • General Math
Replies
1
Views
777
Replies
17
Views
3K
  • Calculus and Beyond Homework Help
Replies
5
Views
347
Replies
4
Views
339
  • Precalculus Mathematics Homework Help
Replies
17
Views
1K
Replies
5
Views
1K
  • Quantum Physics
Replies
27
Views
2K
  • Quantum Physics
Replies
9
Views
787
  • Science and Math Textbooks
Replies
17
Views
1K
Back
Top