Waterfall plot of an PMSM

Click For Summary
The discussion focuses on analyzing the frequency spectrum of a Permanent Magnet Synchronous Motor (PMSM) using a Waterfall plot. The user observes parallel frequency pairs with the same amplitude across the RPM range and questions whether this indicates a scripting issue or a potential problem with the PMSM. They provide MATLAB code for data processing, including FFT analysis and plotting, and mention that the two largest peaks correspond to the motor's electrical frequency. The user seeks insights into the observed frequency behavior and possible explanations for the results. The analysis aims to enhance understanding of the motor's performance characteristics.
Lalo2202
Messages
2
Reaction score
0
TL;DR
Analysis of vibrations over the full RPM range of a PMSM
Hello everyone,

Im working on analizing the spectram domain of frequencies present on an PMSM when turning alone.

I attach an image of my Waterfall diagramm results, as you can see there are several frequencies that appear in parallel pairs with the same amplitude along the whole RPM range, my assumption is that these pairs represent a single frequency located in the middle but for some reason it is being represented as in the imaged be solved in the script?

or is there a problem in my PMSM that could make my frequencies look like this. search online for possible reasons why this happens

Code:
clear all
close all

% Load data
file_name = 'exp1_acoustic_cpm150A0_ASQ_N7_30x100rpmx2sec_20kHz_2kHz_LPF_automated';
s=load(file_name);

% FFT window type: a=no window, b=Rectangular, c=Hann, d=Hamming, e=Flattop, f=Blackman-Harris, g=Nuttall, h=Chebyshev
winType = 'b'; 

length_data = length(s.exp1_acoustic_cpm150A0_ASQ_N7_30x100rpmx2sec_20kHz_2kHz_LPF_automated.X(1).Data);
x = s.exp1_acoustic_cpm150A0_ASQ_N7_30x100rpmx2sec_20kHz_2kHz_LPF_automated.X(1).Data(1:length_data);

Fs = 20000; T = 1/Fs;

fft_cycles = 3;
speed_aver_window = 1; %samller better for non constant speed
speed_aver_wind_points = speed_aver_window / T;
multipleORHz = 1;  % 1 = order, 2 = Hz

index_speed_sw = 1;
index_vibr = 2;
index_vibr_filt = 3;

speed_main = s.exp1_acoustic_cpm150A0_ASQ_N7_30x100rpmx2sec_20kHz_2kHz_LPF_automated.Y(index_speed_sw).Data(1:length_data);
vibr_main  = s.exp1_acoustic_cpm150A0_ASQ_N7_30x100rpmx2sec_20kHz_2kHz_LPF_automated.Y(index_vibr_filt).Data(1:length_data);
vibr_filt  = s.exp1_acoustic_cpm150A0_ASQ_N7_30x100rpmx2sec_20kHz_2kHz_LPF_automated.Y(index_vibr_filt).Data(1:length_data);


set(gcf,'color','white')
ax1=subplot(5,1,2);
plot(x,speed_main,'r');
title('Speed'); xlabel('Time [s]'); ylabel('Speed [rpm]'); legend('Sensor'); grid on

ax2=subplot(5,1,3);
plot(x,vibr_main,'.- r', x,vibr_filt,'b');
title('Vibrations'); xlabel('Time [s]'); ylabel('Acceleration [g]'); grid on

linkaxes([ax1,ax2],'x');

time_start_fft = 61;
point_start_fft = round(time_start_fft / T);

speed_main_rpm_aver = abs(mean(speed_main(point_start_fft:(point_start_fft + speed_aver_wind_points))));
speed_rps = abs(speed_main_rpm_aver / 60);
period = 1 / speed_rps;
window_sec = fft_cycles * period;
window_poins = round(window_sec * Fs);

% Window function
switch lower(winType)
    case 'a', win = ones(window_poins,1);
    case 'b', win = rectwin(window_poins);
    case 'c', win = hann(window_poins);
    case 'd', win = hamming(window_poins);
    case 'e', win = flattopwin(window_poins);
    case 'f', win = blackmanharris(window_poins);
    case 'g', win = nuttallwin(window_poins);
    case 'h', win = chebwin(window_poins, 60);
    otherwise, error('Unknown winType "%s"', winType);
end

vibr_main_aver = mean(vibr_main(point_start_fft:(point_start_fft + speed_aver_wind_points)));

time_wind = zeros(window_poins, 1);
vibr_wind = zeros(window_poins, 1);
speed_wind = zeros(window_poins, 1);

j = 1;
for i = point_start_fft:(point_start_fft + window_poins - 1)
    time_wind(j) = x(i);
    vibr_wind(j) = (vibr_main(i) - vibr_main_aver) * win(j);
    speed_wind(j) = speed_main(i);
    j = j + 1;
end

figure
set(gcf,'color','white')
bx1=subplot(3,1,2);
plot(time_wind,vibr_wind,'r');
title('Acceleretion window'); xlabel('Time [s]'); ylabel('Acceleration [g]'); grid on

bx2=subplot(3,1,3);
plot(time_wind,speed_wind,'r');
title('Speed window'); xlabel('Time [s]'); ylabel('Speed [rpm]'); grid on
linkaxes([bx1,bx2],'x');

Y1=fft(vibr_wind);
L=window_poins;
P2 = abs(Y1/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);

if multipleORHz == 1
    freq_ref = speed_main_rpm_aver/60;
    freq_plot_lim = 100;
elseif multipleORHz == 2
    freq_ref = 1;
    freq_plot_lim = 4000;
end

f1 = (Fs*(0:(L/2))/L)/(freq_ref);

figure
set(gcf,'color','white')
bar(f1,P1)
title('Single-Sided Amplitude Spectrum of X(t)')
xlabel('f (multiple of mechanical frequency)')
xlim([0 freq_plot_lim])
ylabel('Absolute value of Harmonic VIBRATIONS [g]')

%% === Waterfall Plot (Frequency Domain 0–5000 Hz, up to 3000 RPM) ===
Fs = 20000; % already defined earlier
rpm = speed_main;         % speed in RPM
vib = vibr_main;          % raw vibration signal

% Limit to 0–3000 RPM and exclude non-positive values
rpm_mask = rpm > 0 & rpm <= 3000;

vib_cut = vib(rpm_mask);
rpm_cut = rpm(rpm_mask);
x_cut = x(rpm_mask); % optional time axis

% Create frequency map
[map_f, freq, rpm_f, time_f, res_f] = rpmfreqmap(vib_cut, Fs, rpm_cut, 3, ...
    'Scale', 'dB', 'Window', 'hamming', 'Amplitude', 'rms');

% Limit to frequencies ≤ 2000 Hz
freq_limit = 2000;
freq_idx = freq <= freq_limit;

map_f = map_f(freq_idx, :);
freq = freq(freq_idx);


% Plot Waterfall (Frequency)
[fr, rp] = meshgrid(freq, rpm_f);
figure;
waterfall(fr, rp, map_f');
view(6, -60);
grid on;
xlabel('Frequency [Hz]');
ylabel('RPM');
zlabel('Amplitude [dB]');
title('Waterfall Plot (Frequency Domain)');
xlim([0 2000]);
ylim([0 3000]);

% Define which orders you want to overlay
ordersToPlot = [1, 2, 3];  % Adjust as needed
colors = lines(length(ordersToPlot));  % Different colors for each line

hold on
for k = 1:length(ordersToPlot)
    % Calculate the frequency line for that order (f = order * RPM / 60)
    freq_line = ordersToPlot(k) * rpm_f / 60;
    
    % Skip frequencies beyond x-axis limit (e.g., 2000 Hz)
    freq_line(freq_line > 2000) = NaN;
    
    % z-position: pick a value slightly above the noise floor
    z_line = ones(size(freq_line)) * (-20 + 5 * k);  % Adjust height if needed

    % Plot the order line
    plot3(freq_line, rpm_f, z_line, '--', 'LineWidth', 2, 'Color', colors(k,:));
    
    % Optionally, add a label
    text(freq_line(end), rpm_f(end), z_line(end), ...
        sprintf('%d×', ordersToPlot(k)), ...
        'Color', colors(k,:), 'FontWeight', 'bold', 'FontSize', 10);
end
hold off



Im usinng matlab 2021[/s][/s][/s][/s]

untitled1.webp
 
Last edited by a moderator:
Engineering news on Phys.org
For information the biggest 2 peaks are around 9.5 and 11.5 order, that links to the 2nd electrical frequencie of my motor with 10 poles
 
Thread 'Local pressures in turbocharger housing?'
This is question for fluid mechanics. Static pressure in the exhaust manifold(turbo car engine) is usually 1.2 to 2.5 times higher than the boost pressure(intake manifold pressure).Boost pressure is around 1bar guage pressure(2bar absolute). Can the local static pressure somewhere inside a turbine housing ever be lower than atmospheric pressure, is this possible? here some links where CFD is used...

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 0 ·
Replies
0
Views
909
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K