I Wave number, frequency, and velocity in dispersive waves

AI Thread Summary
A dispersive wave can be generated with a well-defined wave number and frequency, but it will not be localized. The velocity of any point on the wave, defined as phase velocity, remains constant over time. Forces interacting with waves can vary and typically reshape the wave, meaning that the behavior of a free wave does not directly parallel that of free particles. The specifics of wave behavior depend on the type of wave, with nonlinear systems allowing for solitary wave solutions where amplitude affects velocity. For a deeper understanding, studying dispersive harmonic waves and consulting resources like Landau and Lifshitz is recommended.
Ahmed1029
Messages
109
Reaction score
40
1) If I generate a dispersive wave, will it have well-defined constant wave number and frequency? Ones that don't change in time?

2) does the velocity of any point on the wave stay constant in time?

3) How does force interact with waves? Does a free wave act in analogy with free particles? with every point having the same velocity over time unless disturbed?
 
Physics news on Phys.org
Ahmed1029 said:
1) If I generate a dispersive wave, will it have well-defined constant wave number and frequency? Ones that don't change in time?

2) does the velocity of any point on the wave stay constant in time?

3) How does force interact with waves? Does a free wave act in analogy with free particles? with every point having the same velocity over time unless disturbed?
Answers
1)One can produce such an harmonic wave but it will of necessity not be localized
2)Because it is not localized, the velocity is the phase velocity. It is, by its definition, a constant in time
3)You need to be much more specific here. Typically forces will not be constant in time and/or will reshape the wave.

There are many kinds of waves and the specifics depend upon the wave. For example, there are nonlinear systems which admit solitary wave solutions whose shape is fixed but whose amplitude determines the velocity. This world is complicated.

You should first study dispersive harmonic waves (after understanding the nondispersive ones!)
 
  • Like
Likes vanhees71, topsquark and Ahmed1029
For electromagnetic waves, have a look at Landau and Lifshitz vol. 8. There you get a comprehensive description from first principles for both the usual "temporal dispersion" (valid, e.g., for usual dielectrics and visible light) as well as including "spatial dispersion" (needed, e.g., for em. waves in a plasma).
 
  • Like
Likes hutchphd and Ahmed1029
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Back
Top