Wave-Particle Duality and Particle Specific Identification

ir316507
Messages
2
Reaction score
0
I have been struggling with one simple question. How can one measure the momentum of a particle within a field without disrupting the entire field, all together? If the particle is under observation at at t_0, how is it verifiable that at t_1 the same particle is being observed? Obviously spin and the state of the field can be determined in certain instances, but is it presumptuous to assume that the observed particles are identical?
 
Physics news on Phys.org
Of course you can't say anything about a particle when its not observed. When you observe it next who knows if its the same particle or what it is. QM is silent about any of that. But why make life hard for yourself and the world weirder than it has to be. Its easiest assuming its the same particle so simply do that.

If you are just starting out in QM I suggest the following:
https://www.amazon.com/dp/0473179768/?tag=pfamazon01-20

QM is in fact an approximation to a deeper theory called Quantum Field Theory. By treating everything as a field a number of conceptual issues disappear and is how I suggest you start out. The above book is quite good and unique in its approach. Although some comments he makes about Feynman are off the mark. He attributes Feynman's comment about the shell game played with field theory to field theory itself - it wasn't - it was with regard to renormalisation which has now been resolved through the work of Wilson and others on effective field theory.

Thanks
Bill
 
Last edited by a moderator:
Thanks Bill

I am somewhat new to the concepts, so it would be ideal for me to gain a better understanding. I am an applied mathematics major with possible interests in multivariate public key cryptography. I noticed "spin" seems to be the central focus of the available research.
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...

Similar threads

Back
Top