yoelhalb said:
here I will ask on linear motion
if in linear motion both can claim that the other is moving and
because the one that is moving it clock will go slower so
both claim that the other ones clock is going slower so when they will
meet (for instance the motion is toward each other) who will actually be younger.
even more
consider
A <-------------------> B ------------------> c
when A and B are any objects moving apart with linear motion of any
speed and c is the light going to the right of both.
because both are linear so both claim that they are at rest and the
other one move and his clock is getting slower.
so let see how it's work A claims that he is at rest and the clock of
B gets slower so he still sees light constant, that's fine.
but B claims that he is at rest so A will move so according to B then
Ac (the speed of c according to A) will be more then the speed of
light and the movement of A (from B's point of view) makes the situation worse because its time
slows down so it is getting even much more then the speed of light.
and because that can't be so its clear that A is at rest and B is
moving.
so there is a way to say who is moving even with linear motion
No, A and B will both measure the speed of light to have the same value of c. In Newtonian physics it's true that if A was moving at speed u relative to B, and A measured an object moving at speed v relative to himself in the same direction, then in B's frame the object would be moving at speed u + v, but in relativity this formula no longer works, you must instead use the
relativistic velocity addition formula (u + v)/(1 + uv/c^2). You can see that if the object is a light ray so v=c (i.e. A measured it to move at speed c in his rest frame), then the speed in B's rest frame would be (u + c)/(1 + uc/c^2) = (u + c)/(1 + u/c) = (u + c)/(1/c)*(c + u) = 1/(1/c) = c.
Keep in mind that each is using their own rulers and synchronized clocks to measure speed--speed is distance/time, so if I have a set of synchronized clocks attached to different markings on a ruler which is at rest to me, then if the object passes marking #1 when the clock there reads T1, and then later it passes marking #2 a distance L away from marking #1 when the clock at marking #2 reads T2, then in my frame the speed of this object must be L/(T2 - T1). But if B is using her own ruler and synchronized clocks at rest relative to herself, then in A's frame B's ruler will be shrunk by a factor of \sqrt{1 - v^2/c^2} due to length contraction, the length of each tick of B's clocks will be expanded by 1/\sqrt{1 - v^2/c^2} due to time dilation, and two clocks which are synchronized and a distance of L apart in B's frame will be measured to be out-of-sync by vL/c^2 in A's frame due to the
relativity of simultaneity. If you take all these effects you can see why, even if you calculate everything from A's perspective, it makes sense that B, using these distorted rulers and clocks ('distorted' only in A's frame of course), will measure the speed of a light beam to be c. Here's a numerical example I came up with a while ago:
Say there's a ruler that's 50 light-seconds long in its own rest frame, moving at 0.6c in my frame. In this case the relativistic gamma-factor (which determines the amount of length contraction and time dilation) is 1.25, so in my frame its length is 50/1.25 = 40 light seconds long. At the front and back of the ruler are clocks which are synchronized in the ruler's rest frame; because of the relativity of simultaneity, this means that in my frame they are out-of-sync, with the front clock's time being behind the back clock's time by vx/c^2 = (0.6c)(50 light-seconds)/c^2 = 30 seconds.
Now, when the back end of the moving ruler is lined up with the 0-light-seconds mark of my own ruler (with my own ruler at rest relative to me), I set up a light flash at that position. Let's say at this moment the clock at the back of the moving ruler reads a time of 0 seconds, and since the clock at the front is always behind it by 30 seconds in my frame, then in my frame the clock at the front must read -30 seconds at that moment. 100 seconds later in my frame, the back end will have moved (100 seconds)*(0.6c) = 60 light-seconds along my ruler, and since the ruler is 40 light-seconds long in my frame, this means the front end will be lined up with the 100-light-seconds mark on my ruler. Since 100 seconds have passed, if the light beam is moving at c in my frame it must have moved 100 light-seconds in that time, so it will also be at the 100-light-seconds mark on my ruler, just having caught up with the front end of the moving ruler.
Since 100 seconds passed in my frame, this means 100/1.25 = 80 seconds have passed on the clocks at the front and back of the moving ruler. Since the clock at the back read 0 seconds when the flash was set off, it now reads 80 seconds; and since the clock at the front read -30 seconds, it now reads 50 seconds. And remember, the ruler was 50 light-seconds long in its own rest frame! So in its frame, where the clock at the front is synchronized with the clock at the back, the light flash was set off at the back when the clock there read 0 seconds, and the light beam passed the clock at the front when its time read 50 seconds, so since the ruler is 50-light-seconds long, the beam must have been moving at 50 light-seconds/50 seconds = c as well! So you can see that everything works out--if I measure distances and times with rulers and clocks at rest in my frame, I conclude the light beam moved at 1 c, and if a moving observer measures distance and times with rulers and clocks at rest in his frame, he also concludes the same light beam moved at 1 c.
If you want to also consider what happens if, after reaching the front end of the moving ruler at 100 seconds in my frame, the light then bounces back towards the back in the opposite direction towards the back end, then at 125 seconds in my frame the light will be at a position of 75 light-seconds on my ruler, and the back end of the moving ruler will be at that position as well. Since 125 seconds have passed in my frame, 125/1.25 = 100 seconds will have passed on the clock at the back of the moving ruler. Now remember that on the clock at the front read 50 seconds when the light reached it, and the ruler is 50 light-seconds long in its own rest frame, so an observer on the moving ruler will have measured the light to take an additional 50 seconds to travel the 50 light-seconds from front end to back end.