- 1,753
- 143
Homework Statement
Determine whether the given vectors are orthogonal, parallel, or neither.
Homework Equations
<br /> \cos \theta = \frac{{\overrightarrow {\rm{a}} \cdot \overrightarrow {\rm{b}} }}{{\left| {\overrightarrow {\rm{a}} } \right|\left| {\overrightarrow {\rm{b}} } \right|}}\,\, \Rightarrow \,\,\theta = \cos ^{ - 1} \left( {\frac{{\overrightarrow {\rm{a}} \cdot \overrightarrow {\rm{b}} }}{{\left| {\overrightarrow {\rm{a}} } \right|\left| {\overrightarrow {\rm{b}} } \right|}}} \right)<br />
The Attempt at a Solution
<br /> \begin{array}{l}<br /> \overrightarrow {\rm{a}} = 2i + 6j - 4k,\,\,\,\,\overrightarrow {\rm{b}} = - 3{\rm{\hat i}} - {\rm{9\hat j}}\,{\rm{ + }}\,{\rm{6\hat k}} \\ <br /> \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\overrightarrow {\rm{a}} \cdot \overrightarrow {\rm{b}} = \left( {2 \cdot - 3} \right) + \left( {6 \cdot - 9} \right) + \left( { - 4 \cdot 6} \right) = - 6 + \left( { - 54} \right) + \left( { - 10} \right) = - 58 \ne 0{\rm{__not_ orthogonal}} \\ <br /> \\ <br /> \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\cos ^{ - 1} \left( {\frac{{\overrightarrow {\rm{a}} \cdot \overrightarrow {\rm{b}} }}{{\left| {\overrightarrow {\rm{a}} } \right|\left| {\overrightarrow {\rm{b}} } \right|}}} \right) = \cos ^{ - 1} \left( {\frac{{ - 58}}{{\sqrt {2^2 + 6^2 + \left( { - 4} \right)^2 } \sqrt {\left( { - 3} \right)^2 + \left( { - 9} \right)^2 + 6^2 } }}} \right) = \\ <br /> \\ <br /> \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\cos ^{ - 1} \left( {\frac{{ - 58}}{{\sqrt {4 + 36 + 16} \sqrt {9 + 81 + 36} }}} \right) = \\ <br /> \\ <br /> \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\cos ^{ - 1} \left( {\frac{{ - 58}}{{\sqrt {56} \sqrt {126} }}} \right) \approx 133.67^\circ \ne 0^\circ \,{\rm{not_ parallel,}}\,\, \\ <br /> \end{array}<br />
But the back of the book says parallel.
oops. back to 2nd grade for me