MHB What are some common traps to watch out for in word problems?

AI Thread Summary
Common traps in word problems include ambiguous units of measurement and unclear definitions of terms, which can lead to misinterpretation of the problem. For example, the distinction between raw and refined quantities can significantly alter the calculations needed. Understanding the problem's context and translating it into mathematical terms is often the most challenging aspect. Attention to detail in wording is crucial, as these problems frequently contain built-in confusion. Properly analyzing each component can help avoid mistakes and improve problem-solving accuracy.
DeusAbscondus
Messages
176
Reaction score
0
Hi folks could someone please check my calculations contained in attached file?
thanks.

(incidentally, how can i create a link to such files in the future, weaving them into my text?)

Deus(has gone)
 

Attachments

Mathematics news on Phys.org
Re: exponential decay problem

Yes, it is correct, if $t$ represents hours (it is not made clear in the problem what the unit of $t$ is). For instance, if $t$ was in minutes, then you need to substitute $t = 4 \times 60 = 240$. I think it is meant to be hours though.

Be careful what each symbol means. For instance, in the first question, it says "500kg of raw sugar has been refined to 380kg". Does that mean that there is 380kg of raw sugar remaining, and that there is 500 - 380 = 120kg of refined sugar, or the opposite? Or something else? (sorry, I am not familiar with sugar refining) This will affect the meaning of (and answers to) the questions.

In word problems the hardest part is often (at least to me) understanding what the problem is and converting it to math. They often have little traps built-in to confuse people and make them pay attention to wording, it can be frustrating actually.​
 
Last edited:
Re: exponential decay problem

Thanks Bacterius,
Worked out where I was reading the question wrong.
But it helped - as always - to have another set of eyes look at my work.

Cheers mate,
D'Abs
Bacterius said:
Yes, it is correct, if $t$ represents hours (it is not made clear in the problem what the unit of $t$ is). For instance, if $t$ was in minutes, then you need to substitute $t = 4 \times 60 = 240$. I think it is meant to be hours though.

Be careful what each symbol means. For instance, in the first question, it says "500kg of raw sugar has been refined to 380kg". Does that mean that there is 380kg of raw sugar remaining, and that there is 500 - 380 = 120kg of refined sugar, or the opposite? Or something else? (sorry, I am not familiar with sugar refining) This will affect the meaning of (and answers to) the questions.

In word problems the hardest part is often (at least to me) understanding what the problem is and converting it to math. They often have little traps built-in to confuse people and make them pay attention to wording, it can be frustrating actually.​
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top