What are some intriguing integrals to explore?

  • Context: MHB 
  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Integrals
Click For Summary

Discussion Overview

The thread explores various intriguing integrals, inviting participants to share and discuss their approaches to solving them. The integrals range from theoretical to applied contexts, with some participants providing detailed solutions and others suggesting alternative methods or expressing curiosity about the problems.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Participants share a variety of integrals, including $\displaystyle \int_{0}^{\infty} \frac{x^{2}}{(1+x^{5})(1+x^{6})} \ dx$ and $\displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{\varphi})^{\varphi}} \ dx$ where $\varphi$ is the golden ratio.
  • One participant provides a detailed solution for the first integral using substitutions and symmetry, arriving at $\frac{\pi}{12}$.
  • Another participant proposes a different approach to the second integral, involving the gamma function and arriving at $\boxed{1}$, while expressing a desire for a simpler method.
  • Multiple participants discuss the integral $\displaystyle \int_{0}^{2 \pi} \cos (\cos x) \cosh (\sin x) \ dx$, with various methods leading to the conclusion of $2\pi$.
  • Several participants explore the integral $\displaystyle \int_{0}^{\infty} \sin \left(x^{2} + \frac{1}{x^{2}} \right) \ dx$, with differing approaches leading to similar results involving sine and cosine integrals.
  • One participant mentions a clever substitution for the integral involving the error function, leading to a result of $\frac{1}{\sqrt{2}}$.
  • There is a discussion about the origins of the problems, with one participant noting they were found on the Art of Problem Solving forums.

Areas of Agreement / Disagreement

While participants share solutions and methods, there is no consensus on the simplest or most elegant approach to the integrals. Different methods yield various results, and some participants express uncertainty about the best techniques to use.

Contextual Notes

Some solutions rely on advanced techniques such as the gamma function and substitutions that may not be universally applicable. Participants also note the potential for simpler methods that remain unexplored.

Who May Find This Useful

This discussion may be of interest to mathematicians, students, and enthusiasts looking for challenging integrals and diverse problem-solving techniques in mathematical analysis.

polygamma
Messages
227
Reaction score
0
Here's an eclectic bunch.1) $ \displaystyle \int_{0}^{\infty} \frac{x^{2}}{(1+x^{5})(1+x^{6})} \ dx $2) $ \displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{\varphi})^{\varphi}} \ dx $ where $\varphi$ is the golden ratio3) $ \displaystyle \int_{0}^{\infty} \sin \left(x^{2} + \frac{1}{x^{2}} \right) \ dx $4) $ \displaystyle \int_{0}^{\infty} e^{-x} \text{erf}(\sqrt{x}) \ dx $ where $\text{erf}(x)$ is the error function5) $\displaystyle \int_{0}^{2 \pi} \cos (\cos x) \cosh (\sin x) \ dx $
 
Physics news on Phys.org
Random Variable said:
1) $ \displaystyle \int_{0}^{\infty} \frac{x^{2}}{(1+x^{5})(1+x^{6})} \ dx $
Sub $x = \tan(t)$, then $\displaystyle I = \int_{0}^{\pi/2}\frac{\tan^2{t}~\sec^2{t}}{\left(1+\tan^{6}{t} \right)\left(1+\tan^5{t}\right)}\;{dt}.$ Sub $t \mapsto \frac{\pi}{2}-t$, then $ \displaystyle I = \int_{0}^{\pi/2}\frac{\tan^2{t}~\cot^2{t}}{\left(1+\cot^{6}{t} \right)\left(1+\cot^5{t}\right)}\;{dt}.$ Then by adding $\displaystyle 2I = \int_{0}^{\pi/2}\frac{2\sin^2{2t}}{3\cos{4t}+5}\;{dt} = \int_{0}^{\pi/2}\frac{1}{1+4\cot^2{2t}}\;{dt}$. Sub $t = \tan^{-1}{\ell}$ then $ \displaystyle I = \frac{1}{2}\int_{0}^{\infty}\frac{\ell^2}{\ell^6+1}\;{d\ell}$. Sub $y = \ell^3$ then $ \displaystyle I = \frac{1}{6}\int_{0}^{\infty}\frac{1}{y^2+1}\;{dy} = \frac{\pi}{12}.$
 
Last edited:
Nice Problems!
Random Variable said:
2) $ \displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{\varphi})^{\varphi}} \ dx $ where $\varphi$ is the golden ratio

Consider \( I(a)=\displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{a})^{a}} \ dx \)

\( I(a)=\displaystyle \int_{0}^{\infty} \left( \frac{1}{1+x^{a}} \right)^a dx \)

By the substitution \(\displaystyle u=\frac{1}{1+x^a} \) we obtain:

\( \displaystyle I(a)=\frac{1}{a}\int_{0}^{1}u^a \left( \frac{1}{u} \right)^2 \left( \frac{1}{u}-1\right)^{\frac{1}{a}-a}du=\frac{1}{a}\int_{0}^{1}u^{a-\frac{1}{a}-1}(1-u)^{\frac{1}{a}-1} du=\frac{\Gamma{\left( a-\frac{1}{a}\right)}\Gamma{\left( \frac{1}{a}\right)}}{a\Gamma{\left(a \right)}}\)

Therefore \( \displaystyle I(\varphi)= \frac{\Gamma{\left( \varphi-\frac{1}{\varphi}\right)}\Gamma{\left( \frac{1}{\varphi}\right)}}{\varphi\Gamma{\left( \varphi \right)}} \)

It is known that \( \displaystyle \frac{1}{\varphi}=\varphi-1 \).

So finally we get \( \displaystyle I(\varphi)=\frac{\Gamma(1)\Gamma(\varphi-1)}{\varphi \Gamma(\varphi)}= \dfrac{\Gamma(\varphi-1)}{\varphi \Gamma(\varphi)}=\boxed{1}\)
 
Last edited:
sbhatnagar said:
So finally we get \( \displaystyle I(\varphi)=\frac{\Gamma(1)\Gamma(\varphi-1)}{\varphi \Gamma(\varphi)}= \boxed{\dfrac{\Gamma(\varphi-1)}{\varphi \Gamma(\varphi)}}\)
Which is 1. (Rofl)

I think there should be a clever way of doing this without employing the gamma function!
 
Another approach for the first one is to let $\displaystyle x = \frac{1}{u}$.

My approach to the second one was the same as sbhatnagar except I immediately used $ \displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{a})^{b}} \ dx = \frac{1}{a} B \left (\frac{1}{a},b- \frac{1}{a} \right) $
 
Problem 5

Let \(\displaystyle I= \int_{0}^{2 \pi} \cos (\cos x) \cosh (\sin x) \ dx \)

Note that:

\( \displaystyle \cos (\cos x) \cosh (\sin x) = \left(\frac{e^{i\cos{x}}+e^{-i\cos{x}}}{2}\right) \left( \frac{e^{\sin{x}}+e^{-\sin{x}}}{2}\right) = \cdots=\frac{\cos(e^{ix})+\cos{(e^{-ix}})}{2} \)\( \displaystyle I=\int_{0}^{2\pi} \frac{\cos(e^{ix})+\cos{(e^{-ix}})}{2} dx=\frac{1}{2} \int_{0}^{2\pi}\cos(e^{ix})+\cos{(e^{-ix}}) \ dx \)

Let \( \displaystyle I_1=\int_{0}^{2\pi} \cos(e^{ix})dx \) and \( \displaystyle I_2=\int_{0}^{2\pi} \cos(e^{-ix})dx \)

\( \displaystyle \begin{align*} I_1 &=\int_{0}^{2\pi} \cos(e^{ix})dx \\ &= \int_{0}^{2\pi} \Big( 1-\frac{e^{2ix}}{2!}+\frac{e^{4ix}}{4!}-\cdots \Big) dx \\ &= 2\pi-0 \\ &= 2\pi\end{align*} \)

\( \displaystyle \begin{align*} I_2 &=\int_{0}^{2\pi} \cos(e^{-ix})dx \\ &= \int_{0}^{2\pi} \Big( 1-\frac{e^{-2ix}}{2!}+\frac{e^{-4ix}}{4!}-\cdots \Big) dx \\ &= 2\pi-0 \\ &= 2\pi\end{align*} \)

Therefore \( \displaystyle I=\frac{I_1+I_2}{2}=\frac{4\pi}{2}= \boxed{2\pi} \)
 
Again my solution is similar to sbhatnagar's.

$\displaystyle \cos (\cos x) \cosh (\sin x) = \text{Re} \ \cos (e^{ix}) $

So $\displaystyle \int_{0}^{2 \pi} \cos (\cos x) \cosh (\sin x) \ dx = \text{Re} \int_{0}^{2 \pi} \cos (e^{ix}) \ dx $

$ \displaystyle \text{Re} \int\limits_{|z|=1} \frac{\cos (z)}{iz} \ dz = \text{Re} \ 2 \pi \ \text{Res} \ \left[\frac{\cos (z)}{z}, 0 \right] = 2 \pi (1) = 2 \pi$
 
Here's mine for the first

Let $\displaystyle I = \int_0^{\infty} \dfrac{x^2}{(1+x^5)(1+x^6)}dx$

Then under a change of variable $x \to 1/x$ gives

$\displaystyle I = \int_0^{\infty} \dfrac{x^7}{(1+x^5)(1+x^6)}dx$

Then adding gives

$\displaystyle 2I = \int_0^{\infty} \dfrac{x^2 +x^7}{(1+x^5)(1+x^6)}dx =\int_0^{\infty} \dfrac{x^2}{1+x^6}dx = \dfrac{\pi}{6} $

Solving for I gives $\pi/12$ and stated earlier.
 
My solution to (3)

Let $\displaystyle I= \int_0^{\infty} \sin \left(x^2+\dfrac{1}{x^2}\right)dx$

Let $x \to \dfrac{1}{x}$ gives

$\displaystyle I= \int_0^{\infty} \dfrac{1}{x^2}\sin \left(x^2+\dfrac{1}{x^2}\right)dx$

Adding gives

$\displaystyle 2 I= \int_0^{\infty}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx$

Now split the integral up into the following two

$\displaystyle 2 I= \int_0^{1}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx + \int_1^{\infty}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx$

Under the change of variable $x \to \dfrac{1}{x}$ the second integral becomes the first so we have

$\displaystyle I= \int_0^{1}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx $

Now let $u =\dfrac{1}{x} - x$ so

$\displaystyle I = \int_0^{\infty} \sin (u^2 + 2)du = \sin 2 \int_0^{\infty}\cos u^2 \;du + \cos 2 \int_0^{\infty} \sin u^2 =\sqrt{\dfrac{\pi}{2}}\left( \sin 2 + \cos 2\right)$.
 
  • #10
And (4), if we re-write the integral

$\displaystyle \int_0^{\infty} e^{-x} \text{erf} \sqrt{x} dx = \frac{2}{\sqrt{\pi}}\int_0^{\infty} \int_0^{\sqrt{x}} e^{-x} e^{-y^2} dy dx$

Reversing the order of integration gives

$\displaystyle \frac{2}{\sqrt{\pi}}\int_0^{\infty} \int_{y^2}^{\infty} e^{-x} e^{-y^2} dx dy = \frac{2}{\sqrt{\pi}}\int_0^{\infty} e^{-2y^2} dy= \frac{2}{\sqrt{\pi}} \frac{\sqrt{2\pi}}{4} = \frac{1}{\sqrt{2}}$
 
  • #11
Another solution to the third integral.

$ \displaystyle \int_{0}^{\infty} \sin \left( x^{2}+ \frac{1}{x^{2}} \right) \ dx = \int_{0}^{\infty} \sin \Bigg( \Big( x - \frac{1}{x} \Big)^{2} +2 \Bigg) \ dx $

$ \displaystyle = \sin(2) \int_{0}^{\infty} \cos \Bigg( \Big(x-\frac{1}{x} \Big)^{2} \Bigg) \ dx + \cos(2) \int_{0}^{\infty} \sin \Bigg( \Big(x-\frac{1}{x} \Big)^{2} \Bigg) \ dx$$ \displaystyle \int_{0}^{\infty} f \Bigg( \Big(ax - \frac{b}{x} )\Big)^2 \Bigg) \ dx = \frac{1}{b} \int_{0}^{\infty} f (u^{2}) \ du \ \ a,b>0$so $ \displaystyle \int_{0}^{\infty} \sin \left( x^{2}+ \frac{1}{x^{2}} \right) \ dx= \sin(2) \int_{0}^{\infty} \cos (x^{2}) \ dx + \cos(2) \int_{0}^{\infty} \sin (x^{2}) \ dx$

$ = \displaystyle \frac{1}{2} \sqrt{\frac{\pi}{2}} \big( \sin(2)+\cos(2)\big) $
 
Last edited:
  • #12
Danny said:
Now split the integral up into the following two

$\displaystyle 2 I= \int_0^{1}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx + \int_1^{\infty}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx$
Note that in both cases you could've applied that ${x^2} + \dfrac{1}{{{x^2}}} = {\left( {x - \dfrac{1}{x}} \right)^2} + 2.$ So it's a bit shorter.

Didn't see previous post, but that is.
 
  • #13
@Random Variable: These are very entertaining problems. Can I ask you where are these from? :)
 
  • #14
The first two and the last one I saw posted on the Art of Problem Solving forums a long time ago. I don't remember where I originally saw the third one. And the fourth one is on most Laplace transform tables. I have a notebook of hundreds.
 
  • #15
Markov said:
Note that in both cases you could've applied that ${x^2} + \dfrac{1}{{{x^2}}} = {\left( {x - \dfrac{1}{x}} \right)^2} + 2.$ So it's a bit shorter.

Didn't see previous post, but that is.
i can't get it
 
  • #16
oasi said:
i can't get it

Why not? Do you know how to multiply?

$$\begin{align*} \left( x-\frac{1}{x}\right)^2+2 &=x^2+\frac{1}{x^2}-2+2 \\ &= x^2+\frac{1}{x^2}\end{align*}$$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K