MHB What Are the Bases for Column and Null Spaces of These Matrices?

aidandeno
Messages
1
Reaction score
0
Please help me with these three questions. I'm really struggling to understand these concepts and I think that with an understanding of these three, I will be able to tackle the rest before my test on Wednesday.

Thank you.
http://www.texpaste.com/n/g4rwmzzw
1) $$ A = \left[\begin{matrix}
-6 & -4 & -1 \\
-4 & 6 & -5 \\
-6 & -4 & -1 \\
10 & -2 & 6
\end{matrix}\right] $$
Find a basis for the image of $A$ (or, equivalently, for the linear transformation $T(x)=Ax$) in the form

$$\{ \left[\begin{matrix}
a \\ b \\ c \\ d
\end{matrix}\right] , \left[\begin{matrix}
e \\ f \\ g \\ h
\end{matrix}\right] \}$$

2)$$ A = \left[\begin{matrix}
16 & 0 \\
-8 & 0
\end{matrix}\right] $$
Find bases for the kernel and image of $T(\vec{x}) = A \vec{x}. $

A basis for the kernel of $A$ is $$\{ \left[\begin{matrix}
a\\
b
\end{matrix}\right] \}$$
A basis for the image of $A$ is $$\{ \left[\begin{matrix}
c\\
d
\end{matrix}\right] \}$$

3)
Let $V=\mathbb{R}^{2\times 2}$ be the vector space of $2\times 2$ matrices and let $L :V\to V$ be defined by $L(X) = \left[\begin{array}{cc} 10 &2\cr 20 &4 \end{array}\right] X$

A basis for $\ker (L )$ is:$$\{ \left[\begin{matrix}
a & b\\
c & d
\end{matrix}\right] , \left[\begin{matrix}
e & f\\
g & h
\end{matrix}\right]\}$$

A basis for $\text{ran}(L)$ is:$$\{ \left[\begin{matrix}
i & j\\
k & l
\end{matrix}\right] , \left[\begin{matrix}
m & n\\
o & p
\end{matrix}\right]\}$$
 
Physics news on Phys.org
Hi aidandeno,

Welcome to MHB! :)

Please ask one question per thread and show us what you've done so we know where to help you. Let's do #1.

A basis for the image is a basis for the column space of $A$. What is the rank of $A$? How can we find out the number of linearly independent columns?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
34
Views
2K
Replies
15
Views
2K
Replies
1
Views
1K
Replies
8
Views
2K
Replies
4
Views
2K
Back
Top