What Are the Correct Answers to These Physics Multiple Choice Questions?

Click For Summary
The discussion revolves around solving multiple-choice physics questions, with participants providing their answers and reasoning. Key topics include calculating the speed of a sphere on a frictionless incline, determining force from momentum equations, and analyzing momentum conservation during collisions. Participants also discuss the effects of gravity on oscillation periods and the optimal angle for projectile motion. The conversation emphasizes understanding the principles behind each question, particularly in relation to momentum and energy conservation.
key
Messages
16
Reaction score
0
Hi can someone please help me with these multiple choice questions



A sphere of mass M, radius r, and rotational inertia I is released from rest at the top of an inclined plane of height h as shown above.

1. If the plane is frictionless, what is the speed vcm, of the center of mass of the sphere at the bottom of the incline?
(A) (B) (C) (D) (E)


I think the answer is A

2.. The momentum p of a moving object as a function of time t is given by the expression p = kt3, where k is a constant. The force causing this motion is given by the expression
(A) 3kt2 (B) 3kt2/2 (C) kt2/3 (D) kt4 (E) kt4/4

I think the answer is B




3. A long board is free to slide on a sheet of frictionless ice. As shown in the top view above, a skater skates to the board and hops onto one end, causing the board to slide and rotate. In this situation, which of the following occurs?
(A) Linear momentum is converted to angular momentum.
(B) Kinetic energy is converted to angular momentum.
(C) Rotational kinetic energy is conserved.
(D) Translational kinetic energy is conserved.
(E) Linear momentum and angular momentum are both conserved.

I think the answer is E







4. Two pucks moving on a frictionless air table are about to collide, as shown above. The 1.5 kg puck is moving directly east at 2.0 m/s. The 4.0 kg puck is moving directly north at 1.0 m/s.

What is the magnitude of the total momentum of the two puck system after the collision?
(A) 1.0 kg•m/s (B) 3.5 kg•m/s (C) 5.0 kg•m/s (D) 7.0 kg•m/s (E) 5.5 kg•m/s

I think the answers is D



5. A mass M suspended by a spring with force constant k has a period T when set into oscillation on Earth. Its period on Mars, whose mass is about 1/9 and radius 1/2 that of Earth, is most nearly
(A) 1/3 T (B) 2/3 T (C) T (D) 3/2 T (E) 3 T

I think the answer is C.


6. A student is testing the kinematic equations for uniformly accelerated motion by measuring the time it takes for light weight plastic balls to fall to the floor from a height of 3 m in the lab. The student predicts the time to fall using g as 9.80 m/s2 but finds the measured time to be 35% greater. Which of the following is the most likely cause of the large percent error?
(A) The acceleration due to gravity is 70% greater than 9.80 m/s2 at this location.
(B) The acceleration due to gravity is 70% less than 9.80 m/s2 at this location.
(C) Air resistance increases the downward acceleration.
(D) The acceleration of the plastic balls is not uniform.
(E) The plastic balls are not truly spherical.

I think the answer is A

7. An object is thrown with velocity v from the edge of a cliff above level ground. Neglect air resistance. In order for the object to travel a maximum horizontal distance from the cliff before hitting the ground, the throw should be at an angle θ with respect to the horizontal of
(A) greater than 60° above the horizontal
(B) greater than 45° but less than 60° above the horizontal
(C) greater than zero but less than 45° above the horizontal
(D) zero
(E) greater than zero but less than 45° below the horizontal

I think the answer is D

8. The escape speed for a rocket at Earth's surface is ve . What would be the rocket's escape speed from the surface of a planet with twice Earth's mass and the same radius as Earth?
(A) 2 ve (B) (C) ve (D) (E) ve/2

I think the answer is A
 
Physics news on Phys.org
Hi key! :smile:

(try using the X2 tag just above the Reply box :wink:)
key said:
A sphere of mass M, radius r, and rotational inertia I is released from rest at the top of an inclined plane of height h as shown above.

1. If the plane is frictionless, what is the speed vcm, of the center of mass of the sphere at the bottom of the incline?
(A) (B) (C) (D) (E)


I think the answer is A

erm :redface:aren't you forgetting something? :smile: :smile: :smile:
2.. The momentum p of a moving object as a function of time t is given by the expression p = kt3, where k is a constant. The force causing this motion is given by the expression
(A) 3kt2 (B) 3kt2/2 (C) kt2/3 (D) kt4 (E) kt4/4

I think the answer is B

Why? Give reasons (and yes, I know the question doesn't ask for them)
3. A long board is free to slide on a sheet of frictionless ice. As shown in the top view above, a skater skates to the board and hops onto one end, causing the board to slide and rotate. In this situation, which of the following occurs?
(A) Linear momentum is converted to angular momentum.
(B) Kinetic energy is converted to angular momentum.
(C) Rotational kinetic energy is conserved.
(D) Translational kinetic energy is conserved.
(E) Linear momentum and angular momentum are both conserved.

I think the answer is E

Yes. :approve:
4. Two pucks moving on a frictionless air table are about to collide, as shown above. The 1.5 kg puck is moving directly east at 2.0 m/s. The 4.0 kg puck is moving directly north at 1.0 m/s.

What is the magnitude of the total momentum of the two puck system after the collision?
(A) 1.0 kg•m/s (B) 3.5 kg•m/s (C) 5.0 kg•m/s (D) 7.0 kg•m/s (E) 5.5 kg•m/s

I think the answers is D

You've added the total momentum (3 and 4) before the collision.

How do you add momentums? Is it the same after the collision?
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K