MHB What Are the Key Differences Between Fixed and Movable Pulleys in Physics?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Physics Pulleys
Click For Summary
The discussion highlights the fundamental differences between fixed and movable pulleys in physics. A fixed pulley transmits force without changing its magnitude, maintaining equilibrium where the force exerted equals the gravitational force. In contrast, a movable pulley acts like a one-sided lever, allowing the force required to lift an object to be halved, as it effectively changes the point of rotation. The calculations for torques in both systems demonstrate that equilibrium is maintained by balancing the forces acting on the pulleys. Understanding these principles is crucial for applying pulley systems in practical scenarios.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

View attachment 4338

Fixed pulley:

$$F_G \cdot r=F_z \cdot r \Rightarrow F_G=F_z$$

Only force transfer, no changement of force

Movable pulley:

Like one-sided lever, current center of rotation is at the circumference of the pulley:

$$F_G \cdot r=F_z \cdot 2r \Rightarrow F_z=\frac{F_G}{2}$$

Could you explain me why these formulas stand?? (Wondering)
 

Attachments

  • TPhoto_00126.jpg
    TPhoto_00126.jpg
    25.6 KB · Views: 103
Mathematics news on Phys.org
You assume the systems are in equilibrium. Therefore, the sum of the total torques of each system must be zero.

In the fixed pulley you measure torques with respect to the center of the pulley. In this situation, the torque due to the man is $\tau_m = F_z \cdot r$ in the counterclockwise orientation. The torque due to the box is $\tau_b = F_G \cdot r$, in the clockwise orientation. The sum of these torques is $$\tau_m - \tau_b = F_z \cdot r - F_G \cdot r = 0.$$The negative sign is due to the convention that clockwise orientation gets a negative sign, just as in trigonometry. You obtain the desired result.

There is another way to view this. The thread is massless, and this means the force is fully transmitted to the mass. Therefore, the box has two forces acting on it: the weight and the pulling force. Both forces act vertically, with the weight pointing down and the pulling force pointing up. Since it is in equilibrium we have $F_z - F_G = 0$.

The same idea is applied in the second case, but the point of reference is not the center of the second pulley. Instead you take the point of reference on the right side of the pulley. The distance to the pulling force $F_z$ is $2r$, now acting in a clockwise orientation, and the distance to the weight $F_G$ is $r$, acting in a counterclockwise orientation. Again we assume equilibrium and therefore $$-F_z \cdot 2r + F_G \cdot r = 0.$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
3K
Replies
19
Views
4K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 27 ·
Replies
27
Views
10K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
10K
Replies
22
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
22
Views
3K