MHB What are the Positive Integer Solutions to the Factorial Equation?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Factorial
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine all positive integers $a,\,b$ and $c$ that satisfy equation $(a+b)!=4(b+c)!+18(a+c)!$.
 
Mathematics news on Phys.org
If $(a+b)! = 4(b+c)! + 18(a+c)!$ then $(a+b)! > (a+c)!$, from which it follows that $b>c$. Similarly, $(a+b)! > (b+c)!$, so that $a>c$. Suppose for the moment that $b\geqslant a$, and let $x = \dfrac{(a+b)!}{(b+c)!}$, $y = \dfrac{(b+c)!}{(a+c)!}$. Then $x$ and $y$ are positive integers. After dividing through by $(a+c)!$, the factorial equation becomes $ \dfrac{(a+b)!}{(a+c)!} = \dfrac{4(b+c)!}{(a+c)!} + 18$, or $xy = 4y + 18$. Therefore $y(x-4) = 18$, and $y$ must be a factor of $18$. But not every factor of $18$ will lead to a solution of the equation, because $x$ and $y$ are defined in terms of factorials and so have to be products of consecutive integers. I found that the only values of $(x,y)$ that work are $(7,6)$ and $(22,1)$, corresponding to the solutions $(a,b,c) = (3,4,2)$ and $(11,11,10)$.

There seems to be no obvious reason why $b\geqslant a$, so we should also look at the possibility $a>b$. Then a similar calculation to the one above leads to an equation like $xy = 4y + 18$, but with the $4$ and $18$ interchanged. However, that did not lead to any new solutions of the factorial equation. So there are only two solutions, namely

$7! = 4\cdot6! + 18\cdot5!$ (when $(a,b,c) = (3,4,2)$)

and

$22! = 4\cdot21! + 18\cdot21!$ (when $(a,b,c) = (11,11,10)$).
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
2
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
11
Views
2K
Replies
1
Views
1K
Back
Top