osilmag said:
One of the constants in chaos theory is symbolically labeled as beta, however I haven't found an official definition. The other constants Prandtl and Rayleigh deal with viscosity and diffusivity so they must be appropriate for the specific situation. Is beta simply a constant that can be changed to generate different results or is there more to it?
As
@Krylov mentioned, you are probably referring to the Lorenz equations. I learned them as:
##\dot x= \sigma (y-x)##
##\dot y= rx - y - xz##
##\dot z= xy - bz##
where
##\sigma## is the Prandtl number,
##r## is the Rayleigh number,
##b## is the unnamed parameter ##\beta## to which you are referring.
There is an experimental setup called the Malkus-Lorenz waterwheel, which is a mechanical analogy of the Lorenz equations, actually a special case thereof with ##b=1##. The rotation of this waterwheel is actually also analogous to convection rolls, which occur in convection when ##r## passes a critical treshold; here ##b## is related to the aspect ratio (role wavelength to boundary layer depth) of these convection rolls, which explains why ##b## often appears as a fraction.
Mark44 said:
To the best of my knowledge, there is no special definition for such constants, other then the possible values they can take on.
Actually that stance seems to be a rampant misconception widely occurring, both within and outside of this field; contrary to popular belief there are definitely special definitions for such numbers. These pure numbers always arise from combinations of several dimensional parameters which are subsequently non-dimensionalised using specific products and ratios; the resulting pure number is called a
dimensionless group in the dimensional analysis literature.
Physics - in particular fluid mechanics - is absolutely rife with such dimensionless groups, for example the Reynolds number, Mach number, all coefficients (drag, pressure, lift, etc) from basic physics, the fine structure constant from QED and so on. Moreover, the above procedure of non-dimensionalisation should sound eerily familiar to anyone familiar with constructing natural units in physics, seeing that is exactly how they are constructed using only physical constants. Even stronger, from the perspective of dimensional analysis, I would posit that
all important quantities and formulae in physics are always distinguishable into two types: dimensional groups (regular physics quantities) and dimensionless groups.
The reason that the specialness of these dimensionless pure numbers doesn't seem to be so well known in the wider scientific community is that (this aspect of) nonlinear dynamics (NLD) and/or chaos theory is often marginalised and glossed over in the treatment of the subject. Instead, the focus tends to be predominantly on application, i.e. numerical plugging and chugging on a computer model in order to just quickly find solutions, without any further regard for developing a deeper mathematical understanding of the theory or gain physical intuition. This is worth elaborating on a bit more, for it seems to have large implications for both the present state and future of physics.
This difference in focus might be explained by the fact that NLD courses tend to be more often taught by applied mathematicians than by physicists, and so also attract more applied math majors than physics majors; pure mathematicians tend to already turn up their nose far before ever coming close to the subject. This literally seems to be a case of differing philosophies of mathematics between physicists and (applied) mathematicians stalling progress in both areas, a phenomenon occurring not just among scientists, but even occurring within single scientists who (often unconsciously) carefully separate out their physics knowledge from their mathematics knowledge, as Freeman Dyson masterfully illustrated in his paper 'Missed Opportunities'.
Lets get back to the heart of the topic at hand, namely non-dimensionalisation. Of course, it goes without saying that reformulating an equation containing several parameters into a simpler equation using dimensionless groups can make a solution easier to obtain, but doing this might change qualitative properties of the equation in some non-obvious way. Doing this however also often tends to result in some particular singular limiting case of the original nonlinear equation, which then requires perturbation theory to find an approximate solution. In the strong nonlinear limit however perturbation theory eventually ends up breaking down, requiring more potent techniques such as multiple scale analysis.
Moreover, reinterpreting the input of numerical values in computer models as actually carefully varying geometric and physical properties of a system, i.e. of the parameters within these dimensionless groups enables the use of physical intuition and more importantly, a direct route to experimental verification. Varying particular dimensionless groups past critical values while keeping others constant causes (period doubling) bifurcations in the system; this not only explains but also unifies wholly separated and vastly different branches of physics through the use of renormalisation group theory. It doesn't take an enormous stretch of the imagination to see how the above discussion directly relates very intimately to the mathematical structure of QFT and also to its many troubles - troubles which happen to remain completely unresolved in string theory.
In any case, it seems clear to me that non-dimensionalisation, taken to heart, has enormous implications for the interrelations of theories in physics, i.e. the ontological status of physical analogies and therefore for the entire mathematical structure of physics as a whole. Doing this carefully, i.e. without merely a focus on application and solutions in mind, but actually trying to gain mathematical insight and also develop physical intuition, forms a natural mathematics based guide forward in theoretical physics, a path upon which fractal geometry (FG) and NLD have demonstrably key roles.
The history of mathematics and physics have shown us how these two mathematical fields have in a short timespan already pretty much respectively infiltrated and subsumed all areas of not just physics, but almost all fields of science. This strongly suggests that from a theoretical physics point of view, any contemporary accepted physical theory currently regarded as fundamental, yet not deeply or fundamentally compatible with either FG, NLD or both should be regarded with the necessary amount of suspicion, since such a theory is probably merely provisional (I'm looking at you, QM). I end by paraphrasing Feynman, "
Physics isn't linear, dammit, and if you want to make a fundamental theory of physics, you'd better make it nonlinear, and by golly it's a wonderful problem, because it doesn't look so easy."