ice109 said:
how about an intuitive example of interval that is analogous to distance in 3space, got one of those?
Let me add to the original diagram... inserting a step in the construction.
Forget about Q for now.
Consider an event T that is in the timelike-future of P---say, at proper-time 3 ticks after P [along PT]. The set of all future events 3 ticks from P trace out a hyperbola centered at P... with equation t^2-x^2=3^2. This is analogous to a circle in ordinary Euclidean geometry with "radius" 3.. or square-interval 3^2. The asymptotes of that hyperbola are determined by t^2-x^2=0.. that is, (t-x)(t+x)=0 or (either x=t or x=-t)... the future light cone of P. Now, consider Q in my first reply.
<br />
<br />
\]<br />
\def\qb#1#2{\qbezier(#1)(#2)(#2)}<br />
\begin{picture}(200,200)(0,0)<br />
\unitlength 1mm<br />
<br />
\put(20,0){\circle*{1} \put(-2,-5){$ P $}}<br />
\qbezier[200](20,0)(20,0)(70,50)<br />
\qbezier[200](20,0)(20,0)(0,20)<br />
<br />
\put(60,40){\circle*{1} \put(-2,5){$ Q $}}<br />
\qbezier[200](60,40)(60,40)(10,-10)<br />
\qbezier[200](60,40)(60,40)(110,-10)<br />
<br />
\put(20,0){<br />
\put(7,12.2066){\circle*{1} \put(-2,-5){$ T $}}<br />
\qb{-22.0000,24.1661}{-25.0000,26.9258}<br />
\qb{-19.0000,21.4709}{-22.0000,24.1661}<br />
\qb{-16.0000,18.8680}{-19.0000,21.4709}<br />
\qb{-13.0000,16.4012}{-16.0000,18.8680}<br />
\qb{-10.0000,14.1421}{-13.0000,16.4012}<br />
\qb{-7.0000,12.2066}{-10.0000,14.1421}<br />
\qb{-4.0000,10.7703}{-7.0000,12.2066}<br />
\qb{-1.0000,10.0499}{-4.0000,10.7703}<br />
\qb{2.0000,10.1980}{-1.0000,10.0499}<br />
\qb{5.0000,11.1803}{2.0000,10.1980}<br />
\qb{8.0000,12.8062}{5.0000,11.1803}<br />
\qb{11.0000,14.8661}{8.0000,12.8062}<br />
\qb{14.0000,17.2047}{11.0000,14.8661}<br />
\qb{17.0000,19.7231}{14.0000,17.2047}<br />
\qb{20.0000,22.3607}{17.0000,19.7231}<br />
\qb{23.0000,25.0799}{20.0000,22.3607}<br />
\qb{26.0000,27.8568}{23.0000,25.0799}<br />
\qb{29.0000,30.6757}{26.0000,27.8568}<br />
\qb{32.0000,33.5261}{29.0000,30.6757}<br />
\qb{35.0000,36.4005}{32.0000,33.5261}<br />
\qb{38.0000,39.2938}{35.0000,36.4005}<br />
\qb{41.0000,42.2019}{38.0000,39.2938}<br />
\qb{44.0000,45.1221}{41.0000,42.2019}<br />
\qb{47.0000,48.0521}{44.0000,45.1221}<br />
\qb{50.0000,50.9902}{47.0000,48.0521}<br />
\qb{53.0000,53.9351}{50.0000,50.9902}<br />
\qb{56.0000,56.8859}{53.0000,53.9351}<br />
\qb{59.0000,59.8415}{56.0000,56.8859}<br />
\qb{62.0000,62.8013}{59.0000,59.8415}<br />
\qb{65.0000,65.7647}{62.0000,62.8013}<br />
\qb{68.0000,68.7314}{65.0000,65.7647}<br />
}<br />
\end{picture}<br />
\[<br />