Graduate What does Rovelli mean with "oriented and ordered graph"?

Click For Summary
Rovelli's concept of an "oriented and ordered graph" in quantum gravity refers to the structure of spin networks, where links must be labeled to establish an order before assigning colors. The orientation of the graph is defined by source and target functions, while the order relates to the labeling of links, allowing for potential diffeomorphisms that can swap links and alter their arrangement. Historical context is provided by Penrose's diagrams, which were trivalent and lacked explicit intertwiners, focusing instead on numerical functions assigned to connected nodes without necessary ordering. Rovelli further explains that changing the order of links corresponds to swapping variables, while changing orientation involves replacing a variable with its inverse. Ultimately, ordering specifies the predecessor and successor relationships among the nodes in the graph.
Heidi
Messages
420
Reaction score
40
Hi Pfs
Rovelli writes this in his book (Qunatum Gravity) about spin networks:
Given an oriented and ordered graph there is a finite disgrete group of maps that change its order or orientation and that can be obtained as a diffeomorphism.
A link is equipped the source and target functions. this give the orientation.
But what is the order he is talking about.
the paragraph is the 6.4 (Diff invariance)
thanks
 
Physics news on Phys.org
You have to label the links first, as ##l_1, l_2, \dots## say, before you can assign a colouring ##j_1 , j_2 , \dots##. It is this labelling of the links that is the ordering, I think. With some graphs there are diffeomorphisms that simply swap the links around and hence change the ordering.
 
Last edited:
  • Like
Likes Fractal matter
yes we can do like that to color the links but it is not necessary to have oriented ordered links.
The Penrose's diagrams were the ancestors of the spin networks.
they were trivalent with no explicit intertwiners. the links were not oriented and each link was coloured by a number (not a representation)
So we had a numerical function on a graph without necessary ordering:
to each pair of connected node we assign a number.
 
Rovelli writes later that if changing the order correspond to swap the variables, changing the orientation leads to replace a variable by its inverse.
If in an oriented loop the holonomy gives a matrix, changing the orientation gives the inverse matrix.
 
I think, ordering means specifying the predecessor and successor to each node of the graph.
 
I thought I would start a thread, as as spinoff to perhaps highlight and contemplate of that the ideas in the paper mitchell porter pointed to means. I just started to sniff it.. and wrote in the other thread "How to fix Relativistic QM so it's consistent?" Indeed fixing relativity and how to understnad equivalences, seems to be the central issue of the below paper. ----------------------------------------------------------------- Huge paper, I havent ready it through fully but skimmed...

Similar threads

  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 68 ·
3
Replies
68
Views
10K
Replies
1
Views
4K
  • · Replies 15 ·
Replies
15
Views
4K
Replies
1
Views
3K
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
26
Views
9K
Replies
1
Views
4K
  • · Replies 12 ·
Replies
12
Views
5K