What Does the |x=0 = dy dz Mean in the Physical Interpretation of Divergence?

  • Context: Undergrad 
  • Thread starter Thread starter Summer2442
  • Start date Start date
  • Tags Tags
    Divergence
Click For Summary
SUMMARY

The discussion focuses on the physical interpretation of divergence in fluid dynamics, specifically addressing the expression ρvx|x=0 = dy dz. Participants clarify that this expression is a typographical error and should read ρvx|x=0dxdy. The conversation also explains how the flux out of a volume element is represented as ρvx|x=dx dydz, which incorporates a partial derivative to account for changes in mass flow rate due to the fluid's movement. The introduction of the partial derivative is justified through Taylor's theorem, highlighting the relationship between density, velocity, and flow rate.

PREREQUISITES
  • Understanding of basic calculus concepts, particularly divergence.
  • Familiarity with fluid dynamics principles, including mass flow rate.
  • Knowledge of Taylor's theorem and its applications in approximations.
  • Ability to interpret mathematical expressions related to physical phenomena.
NEXT STEPS
  • Study the fundamentals of divergence in vector calculus.
  • Explore fluid dynamics concepts, focusing on mass flow rate calculations.
  • Learn about Taylor series and their applications in physics and engineering.
  • Investigate the relationship between density, velocity, and flux in fluid systems.
USEFUL FOR

Students and professionals in mathematics, physics, and engineering, particularly those interested in fluid dynamics and vector calculus applications.

Summer2442
Messages
8
Reaction score
0
Hello,

I am new to calculus, and am having problems with divergence, I was reading something to explain the physical interpretation of divergence and i got stuck in the very first part.

it says that if we have a small volume dxdydz at the origin, and that a fluid flowing into this volume from the positive x-direction per unit time, the the rate of flow in is
= ρvx|x=0 = dy dz,
where ρ is the density at (x, y, z), and vx is the velocity of the fluid in the x-direction, what does "|x=0 = dy dz" part mean.

Thanks a lot.
 
Physics news on Phys.org


"|x=0" probably means that the function, here ρvx, should be evaluauted at x=0. So they imagine the volume element as a cuboid with one vertex at the origin and the sides as dx, dy, and dz in the posotive directions. One face of the cuboid is then contained in the plane x=0.

The flux into the volume through this face is then ρvxdydz, so something seems wrong in what you wrote anyway.

Btw, you wrote "from the positive x-direction", but I assume that you meant "along the positive x-direction", so that positive vx is directed to the right.
 


yes what i meant is "along the positive x-direction"

but about the flux into the volume, i agree that it should be 'ρvxdydz' but i am pretty sure this is what the book says 'ρvx|x=0 = dy dz', i think its a mistake.

I have another question please, it then says that the flux out of the opposing face is
ρvx|x=dx dydz
which i understand but then it equates this equation with the following
[ρvx + ∂ (ρvx)/∂x dx] dydz
which i do not understand, how was the partial derivative introduced and why?

thanks,
 


Summer2442 said:
yes what i meant is "along the positive x-direction"

but about the flux into the volume, i agree that it should be 'ρvxdydz' but i am pretty sure this is what the book says 'ρvx|x=0 = dy dz', i think its a mistake.
Yes, it is a typo. It should be ρvx|x=0dxdy.

Summer2442 said:
I have another question please, it then says that the flux out of the opposing face is
ρvx|x=dx dydz
which i understand but then it equates this equation with the following
[ρvx + ∂ (ρvx)/∂x dx] dydz
which i do not understand, how was the partial derivative introduced and why?

thanks,
The second expression is a linear approximation of the first one.

Recall that (ρvx|x=dx - ρvx|x=0)/dx ≈ ∂(ρvx)/∂x|x=0.
 


i think it is talking about mass flow rate... density X velocity X area=flow rate..or more precisely mass flow rate..it says rho X V X x such that at x=0 area is dy dz..for differential element the area perpendicular to flow in x direction is dydz...
the second thing is taylor's theorem is being applied here..which means when fluid has flowed a length dx its mass flowrate has changed depnding upon dx..that is why patial derivative is introduced here..
 
Last edited:


Ok I get it now, thanks guys.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
17K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K