I What does "transforms covariantly" mean here?

AI Thread Summary
The Lagrangian for a scalar field is Lorentz invariant and transforms covariantly under translation. Covariant transformation means that the field transforms according to the relationship between the original and translated coordinates. While the scalar field transforms under translation, the Lagrangian itself is considered invariant, which is a specific case of covariance. The distinction between invariance and covariance is important, as it highlights different aspects of how physical quantities behave under transformations. Understanding these nuances is crucial for proper interpretation in the context of field theory.
Hill
Messages
735
Reaction score
575
TL;DR Summary
The Lagrangian for scalar field under translation
The Lagrangian, $$\mathcal L(x)= \frac 1 2 \partial^{\mu} \phi (x) \partial_{\mu} \phi (x) - \frac 1 2 m^2 \phi (x)^2$$ for a scalar field ##\phi (x)## is said to be Lorentz invariant and to transform covariantly under translation.
What does it mean that it transforms covariantly under translation?
 
Physics news on Phys.org
This means that under translation ##x\to x'(x)=x+a## it transforms as
$$\phi(x)\to\phi'(x')=\phi(x(x'))$$
where ##x(x')=x'-a## is the inverse of ##x'(x)##.
 
Demystifier said:
This means that under translation ##x\to x'(x)=x+a## it transforms as
$$\phi(x)\to\phi'(x')=\phi(x(x'))$$
I understand that this is how ##x## and how ##\phi## transform. But regarding ##\mathcal L##, I think, it makes it rather invariant under translation, doesn't it?
 
Hill said:
I understand that this is how ##x## and how ##\phi## transform. But regarding ##\mathcal L##, I think, it makes it rather invariant under translation, doesn't it?
Yes, but invariant is a special case of covariant. More precisely, covariance of scalars is invariance.
 
Demystifier said:
Yes, but invariant is a special case of covariant. More precisely, covariance of scalars is invariance.
Thank you. I thought, there is a reason for him separating the two transformations rather than saying that it is "Lorentz and translational invariant" or "Poincare invariant."
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top