I What does "transforms covariantly" mean here?

Click For Summary
The Lagrangian for a scalar field is Lorentz invariant and transforms covariantly under translation. Covariant transformation means that the field transforms according to the relationship between the original and translated coordinates. While the scalar field transforms under translation, the Lagrangian itself is considered invariant, which is a specific case of covariance. The distinction between invariance and covariance is important, as it highlights different aspects of how physical quantities behave under transformations. Understanding these nuances is crucial for proper interpretation in the context of field theory.
Hill
Messages
735
Reaction score
576
TL;DR
The Lagrangian for scalar field under translation
The Lagrangian, $$\mathcal L(x)= \frac 1 2 \partial^{\mu} \phi (x) \partial_{\mu} \phi (x) - \frac 1 2 m^2 \phi (x)^2$$ for a scalar field ##\phi (x)## is said to be Lorentz invariant and to transform covariantly under translation.
What does it mean that it transforms covariantly under translation?
 
Physics news on Phys.org
This means that under translation ##x\to x'(x)=x+a## it transforms as
$$\phi(x)\to\phi'(x')=\phi(x(x'))$$
where ##x(x')=x'-a## is the inverse of ##x'(x)##.
 
Demystifier said:
This means that under translation ##x\to x'(x)=x+a## it transforms as
$$\phi(x)\to\phi'(x')=\phi(x(x'))$$
I understand that this is how ##x## and how ##\phi## transform. But regarding ##\mathcal L##, I think, it makes it rather invariant under translation, doesn't it?
 
Hill said:
I understand that this is how ##x## and how ##\phi## transform. But regarding ##\mathcal L##, I think, it makes it rather invariant under translation, doesn't it?
Yes, but invariant is a special case of covariant. More precisely, covariance of scalars is invariance.
 
Demystifier said:
Yes, but invariant is a special case of covariant. More precisely, covariance of scalars is invariance.
Thank you. I thought, there is a reason for him separating the two transformations rather than saying that it is "Lorentz and translational invariant" or "Poincare invariant."
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
Replies
1
Views
339
Replies
1
Views
1K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
575
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
496