What Integer Values Satisfy the Equation xy^2=54 with Constraints?

  • Context: MHB 
  • Thread starter Thread starter chead9
  • Start date Start date
Click For Summary
SUMMARY

The equation xy²=54, with constraints x<10 and y<10, leads to specific integer solutions. The derived formula x=54/y² indicates that y must be a perfect square factor of 54. The only integer values satisfying these conditions are y=3 and x=6, as they fulfill both the equation and the constraints provided.

PREREQUISITES
  • Understanding of integer equations and constraints
  • Knowledge of factors and perfect squares
  • Basic algebraic manipulation
  • Familiarity with prime factorization
NEXT STEPS
  • Explore integer solutions for equations with similar constraints
  • Learn about perfect squares and their properties
  • Study the implications of prime factorization in algebra
  • Investigate other equations involving integer variables
USEFUL FOR

Mathematicians, educators, students studying algebra, and anyone interested in solving integer equations with constraints.

chead9
Messages
2
Reaction score
0
What are the possible values of y such that xy^2=54, x is less than 10, y is less than 10, and x and y are integers? How do I go about finding this answer?
 
Last edited:
Mathematics news on Phys.org
If both $x$ and $y$ have to be integers greater than 10, then what is the smallest value for $xy^2$?
 
MarkFL said:
If both $x$ and $y$ have to be integers greater than 10, then what is the smallest value for $xy^2$?

I made a mistake in the post.. it was supposed to be x and y are both less than 10
 
chead9 said:
I made a mistake in the post.. it was supposed to be x and y are both less than 10

Ah, okay...now we're in business. :)

I think I would start out by arranging the given equation as:

$$x=\frac{54}{y^2}$$

Now, if $x$ is to be an integer, then $y^2$ must be a factor of 54 and at the same time a perfect square. Can you think of any such numbers?
 
We have:

$$x=\frac{54}{y^2}$$

And since we require:

$$x<10$$

this means (also gven $y<10$):

$$\frac{54}{y^2}<10\implies 3\sqrt{\frac{3}{5}}<y<10$$

And since $y$ must be an integer, we should write:

$$\left\lceil3\sqrt{\frac{3}{5}}\right\rceil\le y<10$$

$$3\le y<10$$

We need a number $y^2$ which is a factor of 54 and is a perfect square...so looking at the prime factorization of 54, we find:

$$54=2\cdot27=2\cdot3^3=6\cdot3^2$$

Thus, we must have:

$$y=3\implies x=6$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K