MHB What Integers Between -100 and 400 Satisfy Specific Modular Conditions?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Integers Interval
AI Thread Summary
The discussion revolves around finding integers in the range of [-100, 400] that satisfy two modular conditions: being congruent to 2 modulo 11 and 3 modulo 13. The initial approach involves expressing the integers in terms of a variable k, leading to a system of equations. An alternative method is proposed, which simplifies the process but is deemed more labor-intensive. The solution ultimately reveals specific integers that meet the criteria, including -75, 68, 211, and 354. The conversation highlights the application of the Chinese Remainder Theorem in solving such modular equations.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :)
I am given the following exercise:
Which integers of the interval: $[-100,400]$ have the identity: divided by $11$,the remainder is $2$ and divided by $13$,the remainder is $3$.

It is like that:
$[x]_{11}=[2]_{11} \Rightarrow x \equiv 2(\mod 11) \Rightarrow 11 \mid x-2 \Rightarrow x=11k+2, k \in \mathbb{Z} (*) $
Also, $[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$
Then, from the relation $(*)$, $x=11(13l+6)+2$ and we find the values of $x$ from the relation: $-100 \leq x \leq 400$.Instead of doing it like that:
$[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$

Could I do it also like that:
$x=3+13l,l \in \mathbb{Z}$,and find also the values of $x$ for which the relation $-100 \leq x \leq 400$ stand and then the solution will be the common $x$s ?
 
Mathematics news on Phys.org
evinda said:
Hello! :)
I am given the following exercise:
Which integers of the interval: $[-100,400]$ have the identity: divided by $11$,the remainder is $2$ and divided by $13$,the remainder is $3$.

It is like that:
$[x]_{11}=[2]_{11} \Rightarrow x \equiv 2(\mod 11) \Rightarrow 11 \mid x-2 \Rightarrow x=11k+2, k \in \mathbb{Z} (*) $
Also, $[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$
Then, from the relation $(*)$, $x=11(13l+6)+2$ and we find the values of $x$ from the relation: $-100 \leq x \leq 400$.Instead of doing it like that:
$[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$

Could I do it also like that:
$x=3+13l,l \in \mathbb{Z}$,and find also the values of $x$ for which the relation $-100 \leq x \leq 400$ stand and then the solution will be the common $x$s ?

Hi! :o

Yes. You can also do it like that (the second way)... for this problem.

It should be clear that it is a lot more work.
And it only works because the integers have been limited to an interval that is not too big.

Are you perchance working on a chapter titled Chinese Remainder Theorem?

I suspect you will get more problems that are more complicated, so that you will have to do it the first way.
 
I like Serena said:
Hi! :o

Yes. You can also do it like that (the second way)... for this problem.

It should be clear that it is a lot more work.
And it only works because the integers have been limited to an interval that is not too big.

Are you perchance working on a chapter titled Chinese Remainder Theorem?

I suspect you will get more problems that are more complicated, so that you will have to do it the first way.

I understand!Thank you very much! ;)
Yes,I am working on a chapter with this title.. (Nod)
 
evinda said:
Hello! :)
I am given the following exercise:
Which integers of the interval: $[-100,400]$ have the identity: divided by $11$,the remainder is $2$ and divided by $13$,the remainder is $3$.

It is like that:
$[x]_{11}=[2]_{11} \Rightarrow x \equiv 2(\mod 11) \Rightarrow 11 \mid x-2 \Rightarrow x=11k+2, k \in \mathbb{Z} (*) $
Also, $[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$
Then, from the relation $(*)$, $x=11(13l+6)+2$ and we find the values of $x$ from the relation: $-100 \leq x \leq 400$.Instead of doing it like that:
$[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$

Could I do it also like that:
$x=3+13l,l \in \mathbb{Z}$,and find also the values of $x$ for which the relation $-100 \leq x \leq 400$ stand and then the solution will be the common $x$s ?

The diophantine equation You have to solve is...

$\displaystyle x \equiv 2\ \text{mod}\ 11$

$\displaystyle x \equiv 3\ \text{mod}\ 13\ (1)$

The solving procedure is illustrated in...

http://mathhelpboards.com/number-theory-27/applications-diophantine-equations-6029-post28283.html#post28283

Here is $N = n_{1}\ n_{2} = 143$ so that $N_{1}=13 \implies \lambda_{1} = 13^{- 1} \text{mod}\ 11 = 6$ and $N_{2}=11 \implies \lambda_{2} = 11^{- 1} \text{mod}\ 13 = 6$. The solution is...

$\displaystyle x = (2 \cdot 6 \cdot 13 + 3 \cdot 6 \cdot 11)\ \text{mod}\ 143 = 68\ \text{mod}\ 143\ (2)$

... so that the requested numbers are -75, 68, 211, 354...

Kind regards

$\chi$ $\sigma$
 
Hello, evinda!

I solved it with basic algebra.

Which integers on the interval: [-100,400] have the identity:
divided by 11,the remainder is 2,
and divided by 13,the remainder is 3.
We have: .\begin{Bmatrix}N &=& 11a + 2 & [1] \\ N &=& 13b + 3 & [2]\end{Bmatrix}

Equate [1] and [2]: .11a + 2 \:=\:13b + 3

. . a \:=\:\frac{13b+1}{11} \quad\Rightarrow\quad a \:=\:b + \frac{2b+1}{11}\;\;[3]

Since a is an integer, 2b+1 must be a multiple of 11.

This first happens when b = 5
. . and in general when b = 5+11k.

Sustitute into [3]: .a \:=\: (5+11k) + \frac{2(5+11k) + 1}{11}
. . which simplifies to: .a \:=\:13k+6

Substitute into [1]:
. . N \:=\:11(13k+6) + 2 \quad\Rightarrow\quad N \:=\:143k + 68

For k = 1,2, we have: .N \:=\:211,\,354
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top