MHB What Integers Between -100 and 400 Satisfy Specific Modular Conditions?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Integers Interval
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :)
I am given the following exercise:
Which integers of the interval: $[-100,400]$ have the identity: divided by $11$,the remainder is $2$ and divided by $13$,the remainder is $3$.

It is like that:
$[x]_{11}=[2]_{11} \Rightarrow x \equiv 2(\mod 11) \Rightarrow 11 \mid x-2 \Rightarrow x=11k+2, k \in \mathbb{Z} (*) $
Also, $[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$
Then, from the relation $(*)$, $x=11(13l+6)+2$ and we find the values of $x$ from the relation: $-100 \leq x \leq 400$.Instead of doing it like that:
$[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$

Could I do it also like that:
$x=3+13l,l \in \mathbb{Z}$,and find also the values of $x$ for which the relation $-100 \leq x \leq 400$ stand and then the solution will be the common $x$s ?
 
Mathematics news on Phys.org
evinda said:
Hello! :)
I am given the following exercise:
Which integers of the interval: $[-100,400]$ have the identity: divided by $11$,the remainder is $2$ and divided by $13$,the remainder is $3$.

It is like that:
$[x]_{11}=[2]_{11} \Rightarrow x \equiv 2(\mod 11) \Rightarrow 11 \mid x-2 \Rightarrow x=11k+2, k \in \mathbb{Z} (*) $
Also, $[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$
Then, from the relation $(*)$, $x=11(13l+6)+2$ and we find the values of $x$ from the relation: $-100 \leq x \leq 400$.Instead of doing it like that:
$[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$

Could I do it also like that:
$x=3+13l,l \in \mathbb{Z}$,and find also the values of $x$ for which the relation $-100 \leq x \leq 400$ stand and then the solution will be the common $x$s ?

Hi! :o

Yes. You can also do it like that (the second way)... for this problem.

It should be clear that it is a lot more work.
And it only works because the integers have been limited to an interval that is not too big.

Are you perchance working on a chapter titled Chinese Remainder Theorem?

I suspect you will get more problems that are more complicated, so that you will have to do it the first way.
 
I like Serena said:
Hi! :o

Yes. You can also do it like that (the second way)... for this problem.

It should be clear that it is a lot more work.
And it only works because the integers have been limited to an interval that is not too big.

Are you perchance working on a chapter titled Chinese Remainder Theorem?

I suspect you will get more problems that are more complicated, so that you will have to do it the first way.

I understand!Thank you very much! ;)
Yes,I am working on a chapter with this title.. (Nod)
 
evinda said:
Hello! :)
I am given the following exercise:
Which integers of the interval: $[-100,400]$ have the identity: divided by $11$,the remainder is $2$ and divided by $13$,the remainder is $3$.

It is like that:
$[x]_{11}=[2]_{11} \Rightarrow x \equiv 2(\mod 11) \Rightarrow 11 \mid x-2 \Rightarrow x=11k+2, k \in \mathbb{Z} (*) $
Also, $[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$
Then, from the relation $(*)$, $x=11(13l+6)+2$ and we find the values of $x$ from the relation: $-100 \leq x \leq 400$.Instead of doing it like that:
$[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$

Could I do it also like that:
$x=3+13l,l \in \mathbb{Z}$,and find also the values of $x$ for which the relation $-100 \leq x \leq 400$ stand and then the solution will be the common $x$s ?

The diophantine equation You have to solve is...

$\displaystyle x \equiv 2\ \text{mod}\ 11$

$\displaystyle x \equiv 3\ \text{mod}\ 13\ (1)$

The solving procedure is illustrated in...

http://mathhelpboards.com/number-theory-27/applications-diophantine-equations-6029-post28283.html#post28283

Here is $N = n_{1}\ n_{2} = 143$ so that $N_{1}=13 \implies \lambda_{1} = 13^{- 1} \text{mod}\ 11 = 6$ and $N_{2}=11 \implies \lambda_{2} = 11^{- 1} \text{mod}\ 13 = 6$. The solution is...

$\displaystyle x = (2 \cdot 6 \cdot 13 + 3 \cdot 6 \cdot 11)\ \text{mod}\ 143 = 68\ \text{mod}\ 143\ (2)$

... so that the requested numbers are -75, 68, 211, 354...

Kind regards

$\chi$ $\sigma$
 
Hello, evinda!

I solved it with basic algebra.

Which integers on the interval: [-100,400] have the identity:
divided by 11,the remainder is 2,
and divided by 13,the remainder is 3.
We have: .\begin{Bmatrix}N &=& 11a + 2 & [1] \\ N &=& 13b + 3 & [2]\end{Bmatrix}

Equate [1] and [2]: .11a + 2 \:=\:13b + 3

. . a \:=\:\frac{13b+1}{11} \quad\Rightarrow\quad a \:=\:b + \frac{2b+1}{11}\;\;[3]

Since a is an integer, 2b+1 must be a multiple of 11.

This first happens when b = 5
. . and in general when b = 5+11k.

Sustitute into [3]: .a \:=\: (5+11k) + \frac{2(5+11k) + 1}{11}
. . which simplifies to: .a \:=\:13k+6

Substitute into [1]:
. . N \:=\:11(13k+6) + 2 \quad\Rightarrow\quad N \:=\:143k + 68

For k = 1,2, we have: .N \:=\:211,\,354
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top