What is a Marginal Distribution and How Does it Apply to F1(x)F2(y)?

MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
I'm not sure I understnad what is a marginal distribution, but i need to show that if F1,F2 are one dimensional cummulative distribution functions then I(x,y)=F1(x)F2(y) has F1 and F2 as its marginal distributions.

well if I(x,y)=P(X<=x,Y<=y) and if X and Y are independent, then it equals: P(X<=x)*P(Y<=y), then F1(x)=P(X<=x) F2(y)=P(Y<=y)
or in general: F1(x)=P(X<=x, Y\inA) F2(y)=P(X \in B Y<=y) where A and B are intervals where the r.vs Y and X are defined.

but it's really a guess.
 
Physics news on Phys.org
What is the definition of a marginal distribution? How does that def. apply to F1(x)F2(y)?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Back
Top