Rasalhague said:
The word Euclidean space is applied to various distinct mathematical objects. One, kind of Euclidean space is the affine space (general sense of "affine space") defined by the Euclidean group of isometries, which don't including scaling. But wouldn't Euclid's axioms apply equally well if we scaled our units by any real number? How would Euclid's Euclidean space be classed in, say, the language of manifolds?
Euclidean space has many meanings now a days.
In topology, it refers to R^n with the topology inherited from the Euclidean metric.
But the metric is forgotten and only the topological space is retained.
On this topological space, metrics can be added as extra structure. Often the metric is Riemannian which means that it arises from an idea of angle and length of tangent vectors at each point. For a Riemannian metric, one needs to view R^n as a differentiable manifold and not just a topological space. So this is the second meaning of Euclidean space, the topological space together with a notion of calculus on it.
Once this manifold has a metric then as a Riemannian manifold it is only called Euclidean space when the metric is flat, this when its curvature tensor is identically zero. In this case, the Euclidean group will be the group of isometries of this flat Riemannian manifold.
Scale expansions will not be isometries on this flat manifold but will preserve the sum of the angles of a triangle and this invariance of the sum of the angles can be viewed as the defining feature of Euclidean geometry.
underlying Euclidean geometry is R^n, the topological space. Flat geometries can be put on other manifolds with different topologies and locally these flat manifolds will be indistinguishable from flat Euclidean space. For instance, a Klein bottle can be given a flat metric.
Klein's Erlangen program - which I know nothing about - tried to classifly geometries by their isometry groups. The group of Euclidean motions defines Euclidean geometry and other groups defined other geometries. Since I can not explain this point of view I include the Wikipedia link.
http://en.wikipedia.org/wiki/Erlangen_program