Jerk can be difficult to conceptualize when it is defined in terms of calculus. When a force (push or pull) is applied to an object, that object starts to move. As long as the force is applied, the object will continue to speed up. When described in these terms, we are oversimplifying slightly. We think along the lines that there is no force on the object, then suddenly there is a force on the object. We do not think about how long it takes to apply the force.
However, in truth, the application of force does not instantly happen. A change always happens over time. Jerk is the change in acceleration over time. Typically, the time of contact where a force is applied is a split second.
If you push on a wall, it takes a fraction of a second before you apply the full push. Your fingertips will squoosh slightly as you begin to push. How long the squooshing takes determines the jerk. If you push on a wall very slowly, you can actually feel your push increasing. In such a case, the jerk is very low, because the change in force is happening over a relatively long time of several seconds. Jerk happens when a force is applied and removed. But the whole time a force is acting consistently on an object, there is no jerk. (This is because the acceleration is constant when there is a constant force.)
How quickly the force starts its push or pull determines the yank and subsequently the jerk. In most applications, it is not important how quickly the force is applied, and thus we typically think of forces being applied instantaneously. A familiar example of jerk is the rate of application of brakes in an automobile.
An experienced driver gradually applies the brakes, causing a slowly increasing deceleration (small jerk). An inexperienced driver, or a driver responding to an emergency, applies the brakes suddenly, causing a rapid increase in deceleration (large jerk). The sensation of jerk is noticeable, causing the passenger’s head to jerk forward.