MHB What is the angle PQR in triangle $PQR$?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Angle
Click For Summary
In triangle PQR, with D as the midpoint of QR, angle PDQ is 45 degrees and angle PRD is 30 degrees. The relationship m(angle PQD) + m(angle QPD) equals 135 degrees is established. A suggestion is made to draw a line QO perpendicular to PR to simplify the problem. This approach leads to a clearer understanding of the angles involved. The discussion highlights the importance of geometric constructions in solving triangle problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In triangle $PQR$, let $D$ be the midpoint of $QR$. If $\angle PDQ=45^{\circ}$ and $\angle PRD=30^{\circ}$, determine $\angle QPD$.
 
Mathematics news on Phys.org
anemone said:
In triangle $PQR$, let $D$ be the midpoint of $QR$. If $\angle PDQ=45^{\circ}$ and $\angle PRD=30^{\circ}$, determine $\angle QPD$.

From the given you know m\left( {\angle PDR} \right)\;\& \;m\left( {\angle DPR} \right)~.

You also know m\left( {\angle PQD} \right)+m\left( {\angle QPD} \right)=135^o.

Can you finish?
 
Plato said:
From the given you know m\left( {\angle PDR} \right)\;\& \;m\left( {\angle DPR} \right)~.

You also know m\left( {\angle PQD} \right)+m\left( {\angle QPD} \right)=135^o.

Can you finish?

Of course! But only because this is a challenge problem and I am not seeking for help for this problem, Plato!:o
 
anemone said:
In triangle $PQR$, let $D$ be the midpoint of $QR$. If $\angle PDQ=45^{\circ}$ and $\angle PRD=30^{\circ}$, determine $\angle QPD$.

Hello.

1º)\angle DPR=180º-(180º-45º)-30º=15º

2º) Draw the height from Q \ to \ \overline{PR}, getting the point O

\sin 30º=\dfrac{1}{2} \ then \ \overline{QO}=\overline{QD}=\overline{DR}

3º) \angle PDO=60º-45º=15º

4º) For 1º) \overline{OP}=\overline{OD}=\overline{QO} \rightarrow{} \angle PQO=\angle QPO=45º

5º) For 4º): \angle QPD=45º-15º=30º

Regards.
 
mente oscura said:
Hello.

1º)\angle DPR=180º-(180º-45º)-30º=15º

2º) Draw the height from Q \ to \ \overline{PR}, getting the point O

\sin 30º=\dfrac{1}{2} \ then \ \overline{QO}=\overline{QD}=\overline{DR}

3º) \angle PDO=60º-45º=15º

4º) For 1º) \overline{OP}=\overline{OD}=\overline{QO} \rightarrow{} \angle PQO=\angle QPO=45º

5º) For 4º): \angle QPD=45º-15º=30º

Regards.

WOW! That's a brilliant way to draw a line $QO$ such that it is perpendicular to $PR$ and everything immediately becomes obvious.

Bravo, mente oscura!
 

Similar threads

Replies
3
Views
4K
Replies
9
Views
2K
Replies
17
Views
5K
Replies
13
Views
3K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K