What is the angle PQR in triangle $PQR$?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Angle
Click For Summary
SUMMARY

In triangle $PQR$, with $D$ as the midpoint of $QR$, the angles $\angle PDQ = 45^{\circ}$ and $\angle PRD = 30^{\circ}$ are given. To find $\angle QPD$, it is established that the sum of angles $\angle PQD$ and $\angle QPD$ equals $135^{\circ}$. The solution involves constructing a perpendicular line $QO$ to $PR$, simplifying the problem and leading to a clear determination of $\angle QPD$.

PREREQUISITES
  • Understanding of triangle properties and angle relationships
  • Knowledge of midpoint theorem in geometry
  • Familiarity with angle sum properties in triangles
  • Ability to construct perpendicular lines in geometric figures
NEXT STEPS
  • Study the properties of midpoints in triangles
  • Learn about angle bisectors and their applications in triangle geometry
  • Explore geometric constructions using compass and straightedge
  • Investigate the relationship between angles formed by intersecting lines
USEFUL FOR

Students studying geometry, educators teaching triangle properties, and anyone interested in solving geometric challenges.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In triangle $PQR$, let $D$ be the midpoint of $QR$. If $\angle PDQ=45^{\circ}$ and $\angle PRD=30^{\circ}$, determine $\angle QPD$.
 
Mathematics news on Phys.org
anemone said:
In triangle $PQR$, let $D$ be the midpoint of $QR$. If $\angle PDQ=45^{\circ}$ and $\angle PRD=30^{\circ}$, determine $\angle QPD$.

From the given you know m\left( {\angle PDR} \right)\;\& \;m\left( {\angle DPR} \right)~.

You also know m\left( {\angle PQD} \right)+m\left( {\angle QPD} \right)=135^o.

Can you finish?
 
Plato said:
From the given you know m\left( {\angle PDR} \right)\;\& \;m\left( {\angle DPR} \right)~.

You also know m\left( {\angle PQD} \right)+m\left( {\angle QPD} \right)=135^o.

Can you finish?

Of course! But only because this is a challenge problem and I am not seeking for help for this problem, Plato!:o
 
anemone said:
In triangle $PQR$, let $D$ be the midpoint of $QR$. If $\angle PDQ=45^{\circ}$ and $\angle PRD=30^{\circ}$, determine $\angle QPD$.

Hello.

1º)\angle DPR=180º-(180º-45º)-30º=15º

2º) Draw the height from Q \ to \ \overline{PR}, getting the point O

\sin 30º=\dfrac{1}{2} \ then \ \overline{QO}=\overline{QD}=\overline{DR}

3º) \angle PDO=60º-45º=15º

4º) For 1º) \overline{OP}=\overline{OD}=\overline{QO} \rightarrow{} \angle PQO=\angle QPO=45º

5º) For 4º): \angle QPD=45º-15º=30º

Regards.
 
mente oscura said:
Hello.

1º)\angle DPR=180º-(180º-45º)-30º=15º

2º) Draw the height from Q \ to \ \overline{PR}, getting the point O

\sin 30º=\dfrac{1}{2} \ then \ \overline{QO}=\overline{QD}=\overline{DR}

3º) \angle PDO=60º-45º=15º

4º) For 1º) \overline{OP}=\overline{OD}=\overline{QO} \rightarrow{} \angle PQO=\angle QPO=45º

5º) For 4º): \angle QPD=45º-15º=30º

Regards.

WOW! That's a brilliant way to draw a line $QO$ such that it is perpendicular to $PR$ and everything immediately becomes obvious.

Bravo, mente oscura!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K