MHB What is the angle PQR in triangle $PQR$?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Angle
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In triangle $PQR$, let $D$ be the midpoint of $QR$. If $\angle PDQ=45^{\circ}$ and $\angle PRD=30^{\circ}$, determine $\angle QPD$.
 
Mathematics news on Phys.org
anemone said:
In triangle $PQR$, let $D$ be the midpoint of $QR$. If $\angle PDQ=45^{\circ}$ and $\angle PRD=30^{\circ}$, determine $\angle QPD$.

From the given you know m\left( {\angle PDR} \right)\;\& \;m\left( {\angle DPR} \right)~.

You also know m\left( {\angle PQD} \right)+m\left( {\angle QPD} \right)=135^o.

Can you finish?
 
Plato said:
From the given you know m\left( {\angle PDR} \right)\;\& \;m\left( {\angle DPR} \right)~.

You also know m\left( {\angle PQD} \right)+m\left( {\angle QPD} \right)=135^o.

Can you finish?

Of course! But only because this is a challenge problem and I am not seeking for help for this problem, Plato!:o
 
anemone said:
In triangle $PQR$, let $D$ be the midpoint of $QR$. If $\angle PDQ=45^{\circ}$ and $\angle PRD=30^{\circ}$, determine $\angle QPD$.

Hello.

1º)\angle DPR=180º-(180º-45º)-30º=15º

2º) Draw the height from Q \ to \ \overline{PR}, getting the point O

\sin 30º=\dfrac{1}{2} \ then \ \overline{QO}=\overline{QD}=\overline{DR}

3º) \angle PDO=60º-45º=15º

4º) For 1º) \overline{OP}=\overline{OD}=\overline{QO} \rightarrow{} \angle PQO=\angle QPO=45º

5º) For 4º): \angle QPD=45º-15º=30º

Regards.
 
mente oscura said:
Hello.

1º)\angle DPR=180º-(180º-45º)-30º=15º

2º) Draw the height from Q \ to \ \overline{PR}, getting the point O

\sin 30º=\dfrac{1}{2} \ then \ \overline{QO}=\overline{QD}=\overline{DR}

3º) \angle PDO=60º-45º=15º

4º) For 1º) \overline{OP}=\overline{OD}=\overline{QO} \rightarrow{} \angle PQO=\angle QPO=45º

5º) For 4º): \angle QPD=45º-15º=30º

Regards.

WOW! That's a brilliant way to draw a line $QO$ such that it is perpendicular to $PR$ and everything immediately becomes obvious.

Bravo, mente oscura!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
3
Views
4K
Replies
9
Views
2K
Replies
17
Views
5K
Replies
13
Views
3K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Back
Top