What is the antiderivative of $\frac{1}{x^{1/2}+x^{1/3}}$ for $x>0$?

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Antiderivative
Click For Summary

Discussion Overview

The discussion revolves around finding the antiderivative of the function $\frac{1}{x^{1/2}+x^{1/3}}$ for $x > 0$. The focus is on exploring different methods or approaches to compute this integral.

Discussion Character

  • Homework-related

Main Points Raised

  • Several participants repeatedly request the antiderivative of the given function without providing specific methods or solutions.
  • One participant acknowledges the correctness of a method proposed by another, indicating some level of agreement on an approach.
  • Additional participants express gratitude for contributions, suggesting that multiple methods or insights may have been shared.

Areas of Agreement / Disagreement

While there is acknowledgment of correct methods, the discussion does not present a consensus on a specific solution or approach to the antiderivative. Multiple views or methods may exist, but they are not explicitly detailed.

Contextual Notes

The discussion lacks specific mathematical steps or detailed methods for finding the antiderivative, and it is unclear what assumptions or definitions are being used by participants.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]
 
Last edited:
Physics news on Phys.org
If there are any mistakes -- apologies, doing this on my break.

Let $x=a^6 \implies dx=6a^5$
$$\int \frac{1}{x^{1/3}+x^{1/2}}dx=\int \frac{6a^5}{a^3+a^2}da=\int \frac{6a^3}{1+a}da$$
Let $b=a+1$
$$=\int \frac{6(b-1)^3}{b}db=6\int \frac{b^3-3b^2+3b-1}{b}db=6\int \left( b^2-3b+3-\frac{1}{b}\right) db$$
$$=6\left( \frac{b^3}{3}-\frac{3b^2}{2}+3b -\ln{b}\right)+C$$
$$=6\left( \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a) -\ln{(1+a)}\right)+C$$
$$=6\left( \frac{(1+x^{1/6})^3}{3}-\frac{3(1+x^{1/6})^2}{2}+3(1+x^{1/6}) -\ln{(1+x^{1/6})}\right)+C$$
 
lfdahl said:
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]

Let $u = x^{1/6}$ hence $du = \dfrac{dx}{6x^{5/6}}$ and $dx = 6x^{5/6}du $

This can also be written in terms of $u$ as $dx = 6u^5 du$

Note that $x^{1/2} = x^{3/6} = u^3$ and also that $x^{1/3} = x^{2/6} = u^2$

Therefore the integral wrt u is now

$ 6\int \dfrac{u^5}{u^3 + u^2}$

I can cancel a $u^2$ as I am told that $x>0$ and so $u > 0$

$ 6 \int \dfrac{u^3}{u+1}$

Using long division to break this down (I don't know how to show this in Latex sorry)

$\dfrac{u^3}{u+1} = u^2-u+1-\dfrac{1}{u+1}$

Subsituting this back for the integrand gives

$6 \int \left(u^2 - u+1 - \dfrac{1}{u+1}\right) du = \int 6u^2 du - \int 6u du + \int 6du + \int \dfrac{6}{u+1} du$$2u^3 - 3u^2 + 6u + 6\ln (u+1) + C$ (I know that u is positive so no need for absolute value here)Back subbing for x

$2(x^{1/6})^3 - 3(x^{1/6})^2 + 6(x^{1/6}) + 6 \ln (x^{1/6} + 1) + C$

Tidy up a bit

$2x^{1/2} - 3x^{1/3} + 6x^{1/6} + 6\ln (x^{1/6} + 1) + C$

$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} + 6 \ln (\sqrt[6]{x} + 1) + C$
 
lfdahl said:
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]

$\displaystyle \begin{align*} \int{\frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}}\,\mathrm{d}x} &= \int{\frac{1}{x^{\frac{3}{6}} + x^{\frac{2}{6}}}\,\mathrm{d}x} \\ &= \int{ \frac{1}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\mathrm{d}x} \\ &= \int{ \frac{6\,x^{\frac{5}{6}}}{6\,x^{\frac{5}{6}}\,\left[ \left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2 \right] }\,\mathrm{d}x } \\ &= \int{\frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x} \end{align*}$

Now let $\displaystyle \begin{align*} u = x^{\frac{1}{6}} \implies \mathrm{d}u = \frac{1}{6\,x^{\frac{5}{6}}}\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x } &= \int{\frac{6\,u^5}{u^3 + u^2}\,\mathrm{d}u} \\ &= \int{ \frac{6\,u^3}{u + 1}\,\mathrm{d}u } \\ &= 6 \int{ \left( u^2 - u + 1 - \frac{1}{u + 1}\right) \,\mathrm{d}u } \\ &= 6\,\left( \frac{u^3}{3} - \frac{u^2}{2} + u - \ln{ \left| u + 1 \right| } \right) + C \\ &= 2\,u^3 - 3\,u^2 + 6\,u - 6\ln{ \left| u + 1 \right| } + C \\ &= 2\,\left( x^{\frac{1}{6}} \right) ^3 - 3\,\left( x^{\frac{1}{6}} \right) ^2 + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \\ &= 2\,x^{\frac{1}{2}} - 3\,x^{\frac{1}{3}} + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \end{align*}$
 
Rido12 said:
If there are any mistakes -- apologies, doing this on my break.

Let $x=a^6 \implies dx=6a^5$
$$\int \frac{1}{x^{1/3}+x^{1/2}}dx=\int \frac{6a^5}{a^3+a^2}da=\int \frac{6a^3}{1+a}da$$
Let $b=a+1$
$$=\int \frac{6(b-1)^3}{b}db=6\int \frac{b^3-3b^2+3b-1}{b}db=6\int \left( b^2-3b+3-\frac{1}{b}\right) db$$
$$=6\left( \frac{b^3}{3}-\frac{3b^2}{2}+3b -\ln{b}\right)+C$$
$$=6\left( \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a) -\ln{(1+a)}\right)+C$$
$$=6\left( \frac{(1+x^{1/6})^3}{3}-\frac{3(1+x^{1/6})^2}{2}+3(1+x^{1/6}) -\ln{(1+x^{1/6})}\right)+C$$

Hi, Rido12

Thankyou for your solution, your method is correct:

- but you forgot to reduce the expression: \[ \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a)\]

- - - Updated - - -

SuperSonic4 said:
Let $u = x^{1/6}$ hence $du = \dfrac{dx}{6x^{5/6}}$ and $dx = 6x^{5/6}du $

This can also be written in terms of $u$ as $dx = 6u^5 du$

Note that $x^{1/2} = x^{3/6} = u^3$ and also that $x^{1/3} = x^{2/6} = u^2$

Therefore the integral wrt u is now

$ 6\int \dfrac{u^5}{u^3 + u^2}$

I can cancel a $u^2$ as I am told that $x>0$ and so $u > 0$

$ 6 \int \dfrac{u^3}{u+1}$

Using long division to break this down (I don't know how to show this in Latex sorry)

$\dfrac{u^3}{u+1} = u^2-u+1-\dfrac{1}{u+1}$

Subsituting this back for the integrand gives

$6 \int \left(u^2 - u+1 - \dfrac{1}{u+1}\right) du = \int 6u^2 du - \int 6u du + \int 6du + \int \dfrac{6}{u+1} du$$2u^3 - 3u^2 + 6u + 6\ln (u+1) + C$ (I know that u is positive so no need for absolute value here)Back subbing for x

$2(x^{1/6})^3 - 3(x^{1/6})^2 + 6(x^{1/6}) + 6 \ln (x^{1/6} + 1) + C$

Tidy up a bit

$2x^{1/2} - 3x^{1/3} + 6x^{1/6} + 6\ln (x^{1/6} + 1) + C$

$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} + 6 \ln (\sqrt[6]{x} + 1) + C$

Good job, SuperSonic4! Thankyou for your participation!

- - - Updated - - -

Prove It said:
$\displaystyle \begin{align*} \int{\frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}}\,\mathrm{d}x} &= \int{\frac{1}{x^{\frac{3}{6}} + x^{\frac{2}{6}}}\,\mathrm{d}x} \\ &= \int{ \frac{1}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\mathrm{d}x} \\ &= \int{ \frac{6\,x^{\frac{5}{6}}}{6\,x^{\frac{5}{6}}\,\left[ \left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2 \right] }\,\mathrm{d}x } \\ &= \int{\frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x} \end{align*}$

Now let $\displaystyle \begin{align*} u = x^{\frac{1}{6}} \implies \mathrm{d}u = \frac{1}{6\,x^{\frac{5}{6}}}\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x } &= \int{\frac{6\,u^5}{u^3 + u^2}\,\mathrm{d}u} \\ &= \int{ \frac{6\,u^3}{u + 1}\,\mathrm{d}u } \\ &= 6 \int{ \left( u^2 - u + 1 - \frac{1}{u + 1}\right) \,\mathrm{d}u } \\ &= 6\,\left( \frac{u^3}{3} - \frac{u^2}{2} + u - \ln{ \left| u + 1 \right| } \right) + C \\ &= 2\,u^3 - 3\,u^2 + 6\,u - 6\ln{ \left| u + 1 \right| } + C \\ &= 2\,\left( x^{\frac{1}{6}} \right) ^3 - 3\,\left( x^{\frac{1}{6}} \right) ^2 + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \\ &= 2\,x^{\frac{1}{2}} - 3\,x^{\frac{1}{3}} + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \end{align*}$
Awesome, Prove It! Thankyou for your participation!
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K