MHB What is the antiderivative of $\frac{1}{x^{1/2}+x^{1/3}}$ for $x>0$?

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Antiderivative
Click For Summary
The discussion focuses on finding the antiderivative of the function 1/(x^(1/2) + x^(1/3)) for x > 0. Multiple users contribute solutions and express gratitude for each other's methods. The conversation highlights the correctness of the approaches taken by participants, indicating a collaborative effort in solving the integral. Overall, the thread emphasizes the importance of community support in tackling complex mathematical problems. The antiderivative remains the central topic throughout the discussion.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]
 
Last edited:
Mathematics news on Phys.org
If there are any mistakes -- apologies, doing this on my break.

Let $x=a^6 \implies dx=6a^5$
$$\int \frac{1}{x^{1/3}+x^{1/2}}dx=\int \frac{6a^5}{a^3+a^2}da=\int \frac{6a^3}{1+a}da$$
Let $b=a+1$
$$=\int \frac{6(b-1)^3}{b}db=6\int \frac{b^3-3b^2+3b-1}{b}db=6\int \left( b^2-3b+3-\frac{1}{b}\right) db$$
$$=6\left( \frac{b^3}{3}-\frac{3b^2}{2}+3b -\ln{b}\right)+C$$
$$=6\left( \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a) -\ln{(1+a)}\right)+C$$
$$=6\left( \frac{(1+x^{1/6})^3}{3}-\frac{3(1+x^{1/6})^2}{2}+3(1+x^{1/6}) -\ln{(1+x^{1/6})}\right)+C$$
 
lfdahl said:
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]

Let $u = x^{1/6}$ hence $du = \dfrac{dx}{6x^{5/6}}$ and $dx = 6x^{5/6}du $

This can also be written in terms of $u$ as $dx = 6u^5 du$

Note that $x^{1/2} = x^{3/6} = u^3$ and also that $x^{1/3} = x^{2/6} = u^2$

Therefore the integral wrt u is now

$ 6\int \dfrac{u^5}{u^3 + u^2}$

I can cancel a $u^2$ as I am told that $x>0$ and so $u > 0$

$ 6 \int \dfrac{u^3}{u+1}$

Using long division to break this down (I don't know how to show this in Latex sorry)

$\dfrac{u^3}{u+1} = u^2-u+1-\dfrac{1}{u+1}$

Subsituting this back for the integrand gives

$6 \int \left(u^2 - u+1 - \dfrac{1}{u+1}\right) du = \int 6u^2 du - \int 6u du + \int 6du + \int \dfrac{6}{u+1} du$$2u^3 - 3u^2 + 6u + 6\ln (u+1) + C$ (I know that u is positive so no need for absolute value here)Back subbing for x

$2(x^{1/6})^3 - 3(x^{1/6})^2 + 6(x^{1/6}) + 6 \ln (x^{1/6} + 1) + C$

Tidy up a bit

$2x^{1/2} - 3x^{1/3} + 6x^{1/6} + 6\ln (x^{1/6} + 1) + C$

$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} + 6 \ln (\sqrt[6]{x} + 1) + C$
 
lfdahl said:
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]

$\displaystyle \begin{align*} \int{\frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}}\,\mathrm{d}x} &= \int{\frac{1}{x^{\frac{3}{6}} + x^{\frac{2}{6}}}\,\mathrm{d}x} \\ &= \int{ \frac{1}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\mathrm{d}x} \\ &= \int{ \frac{6\,x^{\frac{5}{6}}}{6\,x^{\frac{5}{6}}\,\left[ \left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2 \right] }\,\mathrm{d}x } \\ &= \int{\frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x} \end{align*}$

Now let $\displaystyle \begin{align*} u = x^{\frac{1}{6}} \implies \mathrm{d}u = \frac{1}{6\,x^{\frac{5}{6}}}\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x } &= \int{\frac{6\,u^5}{u^3 + u^2}\,\mathrm{d}u} \\ &= \int{ \frac{6\,u^3}{u + 1}\,\mathrm{d}u } \\ &= 6 \int{ \left( u^2 - u + 1 - \frac{1}{u + 1}\right) \,\mathrm{d}u } \\ &= 6\,\left( \frac{u^3}{3} - \frac{u^2}{2} + u - \ln{ \left| u + 1 \right| } \right) + C \\ &= 2\,u^3 - 3\,u^2 + 6\,u - 6\ln{ \left| u + 1 \right| } + C \\ &= 2\,\left( x^{\frac{1}{6}} \right) ^3 - 3\,\left( x^{\frac{1}{6}} \right) ^2 + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \\ &= 2\,x^{\frac{1}{2}} - 3\,x^{\frac{1}{3}} + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \end{align*}$
 
Rido12 said:
If there are any mistakes -- apologies, doing this on my break.

Let $x=a^6 \implies dx=6a^5$
$$\int \frac{1}{x^{1/3}+x^{1/2}}dx=\int \frac{6a^5}{a^3+a^2}da=\int \frac{6a^3}{1+a}da$$
Let $b=a+1$
$$=\int \frac{6(b-1)^3}{b}db=6\int \frac{b^3-3b^2+3b-1}{b}db=6\int \left( b^2-3b+3-\frac{1}{b}\right) db$$
$$=6\left( \frac{b^3}{3}-\frac{3b^2}{2}+3b -\ln{b}\right)+C$$
$$=6\left( \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a) -\ln{(1+a)}\right)+C$$
$$=6\left( \frac{(1+x^{1/6})^3}{3}-\frac{3(1+x^{1/6})^2}{2}+3(1+x^{1/6}) -\ln{(1+x^{1/6})}\right)+C$$

Hi, Rido12

Thankyou for your solution, your method is correct:

- but you forgot to reduce the expression: \[ \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a)\]

- - - Updated - - -

SuperSonic4 said:
Let $u = x^{1/6}$ hence $du = \dfrac{dx}{6x^{5/6}}$ and $dx = 6x^{5/6}du $

This can also be written in terms of $u$ as $dx = 6u^5 du$

Note that $x^{1/2} = x^{3/6} = u^3$ and also that $x^{1/3} = x^{2/6} = u^2$

Therefore the integral wrt u is now

$ 6\int \dfrac{u^5}{u^3 + u^2}$

I can cancel a $u^2$ as I am told that $x>0$ and so $u > 0$

$ 6 \int \dfrac{u^3}{u+1}$

Using long division to break this down (I don't know how to show this in Latex sorry)

$\dfrac{u^3}{u+1} = u^2-u+1-\dfrac{1}{u+1}$

Subsituting this back for the integrand gives

$6 \int \left(u^2 - u+1 - \dfrac{1}{u+1}\right) du = \int 6u^2 du - \int 6u du + \int 6du + \int \dfrac{6}{u+1} du$$2u^3 - 3u^2 + 6u + 6\ln (u+1) + C$ (I know that u is positive so no need for absolute value here)Back subbing for x

$2(x^{1/6})^3 - 3(x^{1/6})^2 + 6(x^{1/6}) + 6 \ln (x^{1/6} + 1) + C$

Tidy up a bit

$2x^{1/2} - 3x^{1/3} + 6x^{1/6} + 6\ln (x^{1/6} + 1) + C$

$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} + 6 \ln (\sqrt[6]{x} + 1) + C$

Good job, SuperSonic4! Thankyou for your participation!

- - - Updated - - -

Prove It said:
$\displaystyle \begin{align*} \int{\frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}}\,\mathrm{d}x} &= \int{\frac{1}{x^{\frac{3}{6}} + x^{\frac{2}{6}}}\,\mathrm{d}x} \\ &= \int{ \frac{1}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\mathrm{d}x} \\ &= \int{ \frac{6\,x^{\frac{5}{6}}}{6\,x^{\frac{5}{6}}\,\left[ \left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2 \right] }\,\mathrm{d}x } \\ &= \int{\frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x} \end{align*}$

Now let $\displaystyle \begin{align*} u = x^{\frac{1}{6}} \implies \mathrm{d}u = \frac{1}{6\,x^{\frac{5}{6}}}\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x } &= \int{\frac{6\,u^5}{u^3 + u^2}\,\mathrm{d}u} \\ &= \int{ \frac{6\,u^3}{u + 1}\,\mathrm{d}u } \\ &= 6 \int{ \left( u^2 - u + 1 - \frac{1}{u + 1}\right) \,\mathrm{d}u } \\ &= 6\,\left( \frac{u^3}{3} - \frac{u^2}{2} + u - \ln{ \left| u + 1 \right| } \right) + C \\ &= 2\,u^3 - 3\,u^2 + 6\,u - 6\ln{ \left| u + 1 \right| } + C \\ &= 2\,\left( x^{\frac{1}{6}} \right) ^3 - 3\,\left( x^{\frac{1}{6}} \right) ^2 + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \\ &= 2\,x^{\frac{1}{2}} - 3\,x^{\frac{1}{3}} + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \end{align*}$
Awesome, Prove It! Thankyou for your participation!
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
16
Views
860
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 66 ·
3
Replies
66
Views
6K
Replies
48
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K