MHB What is the antiderivative of $\frac{1}{x^{1/2}+x^{1/3}}$ for $x>0$?

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Antiderivative
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]
 
Last edited:
Mathematics news on Phys.org
If there are any mistakes -- apologies, doing this on my break.

Let $x=a^6 \implies dx=6a^5$
$$\int \frac{1}{x^{1/3}+x^{1/2}}dx=\int \frac{6a^5}{a^3+a^2}da=\int \frac{6a^3}{1+a}da$$
Let $b=a+1$
$$=\int \frac{6(b-1)^3}{b}db=6\int \frac{b^3-3b^2+3b-1}{b}db=6\int \left( b^2-3b+3-\frac{1}{b}\right) db$$
$$=6\left( \frac{b^3}{3}-\frac{3b^2}{2}+3b -\ln{b}\right)+C$$
$$=6\left( \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a) -\ln{(1+a)}\right)+C$$
$$=6\left( \frac{(1+x^{1/6})^3}{3}-\frac{3(1+x^{1/6})^2}{2}+3(1+x^{1/6}) -\ln{(1+x^{1/6})}\right)+C$$
 
lfdahl said:
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]

Let $u = x^{1/6}$ hence $du = \dfrac{dx}{6x^{5/6}}$ and $dx = 6x^{5/6}du $

This can also be written in terms of $u$ as $dx = 6u^5 du$

Note that $x^{1/2} = x^{3/6} = u^3$ and also that $x^{1/3} = x^{2/6} = u^2$

Therefore the integral wrt u is now

$ 6\int \dfrac{u^5}{u^3 + u^2}$

I can cancel a $u^2$ as I am told that $x>0$ and so $u > 0$

$ 6 \int \dfrac{u^3}{u+1}$

Using long division to break this down (I don't know how to show this in Latex sorry)

$\dfrac{u^3}{u+1} = u^2-u+1-\dfrac{1}{u+1}$

Subsituting this back for the integrand gives

$6 \int \left(u^2 - u+1 - \dfrac{1}{u+1}\right) du = \int 6u^2 du - \int 6u du + \int 6du + \int \dfrac{6}{u+1} du$$2u^3 - 3u^2 + 6u + 6\ln (u+1) + C$ (I know that u is positive so no need for absolute value here)Back subbing for x

$2(x^{1/6})^3 - 3(x^{1/6})^2 + 6(x^{1/6}) + 6 \ln (x^{1/6} + 1) + C$

Tidy up a bit

$2x^{1/2} - 3x^{1/3} + 6x^{1/6} + 6\ln (x^{1/6} + 1) + C$

$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} + 6 \ln (\sqrt[6]{x} + 1) + C$
 
lfdahl said:
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]

$\displaystyle \begin{align*} \int{\frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}}\,\mathrm{d}x} &= \int{\frac{1}{x^{\frac{3}{6}} + x^{\frac{2}{6}}}\,\mathrm{d}x} \\ &= \int{ \frac{1}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\mathrm{d}x} \\ &= \int{ \frac{6\,x^{\frac{5}{6}}}{6\,x^{\frac{5}{6}}\,\left[ \left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2 \right] }\,\mathrm{d}x } \\ &= \int{\frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x} \end{align*}$

Now let $\displaystyle \begin{align*} u = x^{\frac{1}{6}} \implies \mathrm{d}u = \frac{1}{6\,x^{\frac{5}{6}}}\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x } &= \int{\frac{6\,u^5}{u^3 + u^2}\,\mathrm{d}u} \\ &= \int{ \frac{6\,u^3}{u + 1}\,\mathrm{d}u } \\ &= 6 \int{ \left( u^2 - u + 1 - \frac{1}{u + 1}\right) \,\mathrm{d}u } \\ &= 6\,\left( \frac{u^3}{3} - \frac{u^2}{2} + u - \ln{ \left| u + 1 \right| } \right) + C \\ &= 2\,u^3 - 3\,u^2 + 6\,u - 6\ln{ \left| u + 1 \right| } + C \\ &= 2\,\left( x^{\frac{1}{6}} \right) ^3 - 3\,\left( x^{\frac{1}{6}} \right) ^2 + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \\ &= 2\,x^{\frac{1}{2}} - 3\,x^{\frac{1}{3}} + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \end{align*}$
 
Rido12 said:
If there are any mistakes -- apologies, doing this on my break.

Let $x=a^6 \implies dx=6a^5$
$$\int \frac{1}{x^{1/3}+x^{1/2}}dx=\int \frac{6a^5}{a^3+a^2}da=\int \frac{6a^3}{1+a}da$$
Let $b=a+1$
$$=\int \frac{6(b-1)^3}{b}db=6\int \frac{b^3-3b^2+3b-1}{b}db=6\int \left( b^2-3b+3-\frac{1}{b}\right) db$$
$$=6\left( \frac{b^3}{3}-\frac{3b^2}{2}+3b -\ln{b}\right)+C$$
$$=6\left( \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a) -\ln{(1+a)}\right)+C$$
$$=6\left( \frac{(1+x^{1/6})^3}{3}-\frac{3(1+x^{1/6})^2}{2}+3(1+x^{1/6}) -\ln{(1+x^{1/6})}\right)+C$$

Hi, Rido12

Thankyou for your solution, your method is correct:

- but you forgot to reduce the expression: \[ \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a)\]

- - - Updated - - -

SuperSonic4 said:
Let $u = x^{1/6}$ hence $du = \dfrac{dx}{6x^{5/6}}$ and $dx = 6x^{5/6}du $

This can also be written in terms of $u$ as $dx = 6u^5 du$

Note that $x^{1/2} = x^{3/6} = u^3$ and also that $x^{1/3} = x^{2/6} = u^2$

Therefore the integral wrt u is now

$ 6\int \dfrac{u^5}{u^3 + u^2}$

I can cancel a $u^2$ as I am told that $x>0$ and so $u > 0$

$ 6 \int \dfrac{u^3}{u+1}$

Using long division to break this down (I don't know how to show this in Latex sorry)

$\dfrac{u^3}{u+1} = u^2-u+1-\dfrac{1}{u+1}$

Subsituting this back for the integrand gives

$6 \int \left(u^2 - u+1 - \dfrac{1}{u+1}\right) du = \int 6u^2 du - \int 6u du + \int 6du + \int \dfrac{6}{u+1} du$$2u^3 - 3u^2 + 6u + 6\ln (u+1) + C$ (I know that u is positive so no need for absolute value here)Back subbing for x

$2(x^{1/6})^3 - 3(x^{1/6})^2 + 6(x^{1/6}) + 6 \ln (x^{1/6} + 1) + C$

Tidy up a bit

$2x^{1/2} - 3x^{1/3} + 6x^{1/6} + 6\ln (x^{1/6} + 1) + C$

$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} + 6 \ln (\sqrt[6]{x} + 1) + C$

Good job, SuperSonic4! Thankyou for your participation!

- - - Updated - - -

Prove It said:
$\displaystyle \begin{align*} \int{\frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}}\,\mathrm{d}x} &= \int{\frac{1}{x^{\frac{3}{6}} + x^{\frac{2}{6}}}\,\mathrm{d}x} \\ &= \int{ \frac{1}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\mathrm{d}x} \\ &= \int{ \frac{6\,x^{\frac{5}{6}}}{6\,x^{\frac{5}{6}}\,\left[ \left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2 \right] }\,\mathrm{d}x } \\ &= \int{\frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x} \end{align*}$

Now let $\displaystyle \begin{align*} u = x^{\frac{1}{6}} \implies \mathrm{d}u = \frac{1}{6\,x^{\frac{5}{6}}}\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x } &= \int{\frac{6\,u^5}{u^3 + u^2}\,\mathrm{d}u} \\ &= \int{ \frac{6\,u^3}{u + 1}\,\mathrm{d}u } \\ &= 6 \int{ \left( u^2 - u + 1 - \frac{1}{u + 1}\right) \,\mathrm{d}u } \\ &= 6\,\left( \frac{u^3}{3} - \frac{u^2}{2} + u - \ln{ \left| u + 1 \right| } \right) + C \\ &= 2\,u^3 - 3\,u^2 + 6\,u - 6\ln{ \left| u + 1 \right| } + C \\ &= 2\,\left( x^{\frac{1}{6}} \right) ^3 - 3\,\left( x^{\frac{1}{6}} \right) ^2 + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \\ &= 2\,x^{\frac{1}{2}} - 3\,x^{\frac{1}{3}} + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \end{align*}$
Awesome, Prove It! Thankyou for your participation!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top