MHB What is the antiderivative of $\frac{1}{x^{1/2}+x^{1/3}}$ for $x>0$?

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Antiderivative
Click For Summary
The discussion focuses on finding the antiderivative of the function 1/(x^(1/2) + x^(1/3)) for x > 0. Multiple users contribute solutions and express gratitude for each other's methods. The conversation highlights the correctness of the approaches taken by participants, indicating a collaborative effort in solving the integral. Overall, the thread emphasizes the importance of community support in tackling complex mathematical problems. The antiderivative remains the central topic throughout the discussion.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]
 
Last edited:
Mathematics news on Phys.org
If there are any mistakes -- apologies, doing this on my break.

Let $x=a^6 \implies dx=6a^5$
$$\int \frac{1}{x^{1/3}+x^{1/2}}dx=\int \frac{6a^5}{a^3+a^2}da=\int \frac{6a^3}{1+a}da$$
Let $b=a+1$
$$=\int \frac{6(b-1)^3}{b}db=6\int \frac{b^3-3b^2+3b-1}{b}db=6\int \left( b^2-3b+3-\frac{1}{b}\right) db$$
$$=6\left( \frac{b^3}{3}-\frac{3b^2}{2}+3b -\ln{b}\right)+C$$
$$=6\left( \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a) -\ln{(1+a)}\right)+C$$
$$=6\left( \frac{(1+x^{1/6})^3}{3}-\frac{3(1+x^{1/6})^2}{2}+3(1+x^{1/6}) -\ln{(1+x^{1/6})}\right)+C$$
 
lfdahl said:
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]

Let $u = x^{1/6}$ hence $du = \dfrac{dx}{6x^{5/6}}$ and $dx = 6x^{5/6}du $

This can also be written in terms of $u$ as $dx = 6u^5 du$

Note that $x^{1/2} = x^{3/6} = u^3$ and also that $x^{1/3} = x^{2/6} = u^2$

Therefore the integral wrt u is now

$ 6\int \dfrac{u^5}{u^3 + u^2}$

I can cancel a $u^2$ as I am told that $x>0$ and so $u > 0$

$ 6 \int \dfrac{u^3}{u+1}$

Using long division to break this down (I don't know how to show this in Latex sorry)

$\dfrac{u^3}{u+1} = u^2-u+1-\dfrac{1}{u+1}$

Subsituting this back for the integrand gives

$6 \int \left(u^2 - u+1 - \dfrac{1}{u+1}\right) du = \int 6u^2 du - \int 6u du + \int 6du + \int \dfrac{6}{u+1} du$$2u^3 - 3u^2 + 6u + 6\ln (u+1) + C$ (I know that u is positive so no need for absolute value here)Back subbing for x

$2(x^{1/6})^3 - 3(x^{1/6})^2 + 6(x^{1/6}) + 6 \ln (x^{1/6} + 1) + C$

Tidy up a bit

$2x^{1/2} - 3x^{1/3} + 6x^{1/6} + 6\ln (x^{1/6} + 1) + C$

$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} + 6 \ln (\sqrt[6]{x} + 1) + C$
 
lfdahl said:
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]

$\displaystyle \begin{align*} \int{\frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}}\,\mathrm{d}x} &= \int{\frac{1}{x^{\frac{3}{6}} + x^{\frac{2}{6}}}\,\mathrm{d}x} \\ &= \int{ \frac{1}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\mathrm{d}x} \\ &= \int{ \frac{6\,x^{\frac{5}{6}}}{6\,x^{\frac{5}{6}}\,\left[ \left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2 \right] }\,\mathrm{d}x } \\ &= \int{\frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x} \end{align*}$

Now let $\displaystyle \begin{align*} u = x^{\frac{1}{6}} \implies \mathrm{d}u = \frac{1}{6\,x^{\frac{5}{6}}}\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x } &= \int{\frac{6\,u^5}{u^3 + u^2}\,\mathrm{d}u} \\ &= \int{ \frac{6\,u^3}{u + 1}\,\mathrm{d}u } \\ &= 6 \int{ \left( u^2 - u + 1 - \frac{1}{u + 1}\right) \,\mathrm{d}u } \\ &= 6\,\left( \frac{u^3}{3} - \frac{u^2}{2} + u - \ln{ \left| u + 1 \right| } \right) + C \\ &= 2\,u^3 - 3\,u^2 + 6\,u - 6\ln{ \left| u + 1 \right| } + C \\ &= 2\,\left( x^{\frac{1}{6}} \right) ^3 - 3\,\left( x^{\frac{1}{6}} \right) ^2 + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \\ &= 2\,x^{\frac{1}{2}} - 3\,x^{\frac{1}{3}} + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \end{align*}$
 
Rido12 said:
If there are any mistakes -- apologies, doing this on my break.

Let $x=a^6 \implies dx=6a^5$
$$\int \frac{1}{x^{1/3}+x^{1/2}}dx=\int \frac{6a^5}{a^3+a^2}da=\int \frac{6a^3}{1+a}da$$
Let $b=a+1$
$$=\int \frac{6(b-1)^3}{b}db=6\int \frac{b^3-3b^2+3b-1}{b}db=6\int \left( b^2-3b+3-\frac{1}{b}\right) db$$
$$=6\left( \frac{b^3}{3}-\frac{3b^2}{2}+3b -\ln{b}\right)+C$$
$$=6\left( \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a) -\ln{(1+a)}\right)+C$$
$$=6\left( \frac{(1+x^{1/6})^3}{3}-\frac{3(1+x^{1/6})^2}{2}+3(1+x^{1/6}) -\ln{(1+x^{1/6})}\right)+C$$

Hi, Rido12

Thankyou for your solution, your method is correct:

- but you forgot to reduce the expression: \[ \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a)\]

- - - Updated - - -

SuperSonic4 said:
Let $u = x^{1/6}$ hence $du = \dfrac{dx}{6x^{5/6}}$ and $dx = 6x^{5/6}du $

This can also be written in terms of $u$ as $dx = 6u^5 du$

Note that $x^{1/2} = x^{3/6} = u^3$ and also that $x^{1/3} = x^{2/6} = u^2$

Therefore the integral wrt u is now

$ 6\int \dfrac{u^5}{u^3 + u^2}$

I can cancel a $u^2$ as I am told that $x>0$ and so $u > 0$

$ 6 \int \dfrac{u^3}{u+1}$

Using long division to break this down (I don't know how to show this in Latex sorry)

$\dfrac{u^3}{u+1} = u^2-u+1-\dfrac{1}{u+1}$

Subsituting this back for the integrand gives

$6 \int \left(u^2 - u+1 - \dfrac{1}{u+1}\right) du = \int 6u^2 du - \int 6u du + \int 6du + \int \dfrac{6}{u+1} du$$2u^3 - 3u^2 + 6u + 6\ln (u+1) + C$ (I know that u is positive so no need for absolute value here)Back subbing for x

$2(x^{1/6})^3 - 3(x^{1/6})^2 + 6(x^{1/6}) + 6 \ln (x^{1/6} + 1) + C$

Tidy up a bit

$2x^{1/2} - 3x^{1/3} + 6x^{1/6} + 6\ln (x^{1/6} + 1) + C$

$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} + 6 \ln (\sqrt[6]{x} + 1) + C$

Good job, SuperSonic4! Thankyou for your participation!

- - - Updated - - -

Prove It said:
$\displaystyle \begin{align*} \int{\frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}}\,\mathrm{d}x} &= \int{\frac{1}{x^{\frac{3}{6}} + x^{\frac{2}{6}}}\,\mathrm{d}x} \\ &= \int{ \frac{1}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\mathrm{d}x} \\ &= \int{ \frac{6\,x^{\frac{5}{6}}}{6\,x^{\frac{5}{6}}\,\left[ \left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2 \right] }\,\mathrm{d}x } \\ &= \int{\frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x} \end{align*}$

Now let $\displaystyle \begin{align*} u = x^{\frac{1}{6}} \implies \mathrm{d}u = \frac{1}{6\,x^{\frac{5}{6}}}\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x } &= \int{\frac{6\,u^5}{u^3 + u^2}\,\mathrm{d}u} \\ &= \int{ \frac{6\,u^3}{u + 1}\,\mathrm{d}u } \\ &= 6 \int{ \left( u^2 - u + 1 - \frac{1}{u + 1}\right) \,\mathrm{d}u } \\ &= 6\,\left( \frac{u^3}{3} - \frac{u^2}{2} + u - \ln{ \left| u + 1 \right| } \right) + C \\ &= 2\,u^3 - 3\,u^2 + 6\,u - 6\ln{ \left| u + 1 \right| } + C \\ &= 2\,\left( x^{\frac{1}{6}} \right) ^3 - 3\,\left( x^{\frac{1}{6}} \right) ^2 + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \\ &= 2\,x^{\frac{1}{2}} - 3\,x^{\frac{1}{3}} + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \end{align*}$
Awesome, Prove It! Thankyou for your participation!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 66 ·
3
Replies
66
Views
6K
  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K