MHB What is the antiderivative of $\frac{1}{x^{1/2}+x^{1/3}}$ for $x>0$?

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Antiderivative
AI Thread Summary
The discussion focuses on finding the antiderivative of the function 1/(x^(1/2) + x^(1/3)) for x > 0. Multiple users contribute solutions and express gratitude for each other's methods. The conversation highlights the correctness of the approaches taken by participants, indicating a collaborative effort in solving the integral. Overall, the thread emphasizes the importance of community support in tackling complex mathematical problems. The antiderivative remains the central topic throughout the discussion.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]
 
Last edited:
Mathematics news on Phys.org
If there are any mistakes -- apologies, doing this on my break.

Let $x=a^6 \implies dx=6a^5$
$$\int \frac{1}{x^{1/3}+x^{1/2}}dx=\int \frac{6a^5}{a^3+a^2}da=\int \frac{6a^3}{1+a}da$$
Let $b=a+1$
$$=\int \frac{6(b-1)^3}{b}db=6\int \frac{b^3-3b^2+3b-1}{b}db=6\int \left( b^2-3b+3-\frac{1}{b}\right) db$$
$$=6\left( \frac{b^3}{3}-\frac{3b^2}{2}+3b -\ln{b}\right)+C$$
$$=6\left( \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a) -\ln{(1+a)}\right)+C$$
$$=6\left( \frac{(1+x^{1/6})^3}{3}-\frac{3(1+x^{1/6})^2}{2}+3(1+x^{1/6}) -\ln{(1+x^{1/6})}\right)+C$$
 
lfdahl said:
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]

Let $u = x^{1/6}$ hence $du = \dfrac{dx}{6x^{5/6}}$ and $dx = 6x^{5/6}du $

This can also be written in terms of $u$ as $dx = 6u^5 du$

Note that $x^{1/2} = x^{3/6} = u^3$ and also that $x^{1/3} = x^{2/6} = u^2$

Therefore the integral wrt u is now

$ 6\int \dfrac{u^5}{u^3 + u^2}$

I can cancel a $u^2$ as I am told that $x>0$ and so $u > 0$

$ 6 \int \dfrac{u^3}{u+1}$

Using long division to break this down (I don't know how to show this in Latex sorry)

$\dfrac{u^3}{u+1} = u^2-u+1-\dfrac{1}{u+1}$

Subsituting this back for the integrand gives

$6 \int \left(u^2 - u+1 - \dfrac{1}{u+1}\right) du = \int 6u^2 du - \int 6u du + \int 6du + \int \dfrac{6}{u+1} du$$2u^3 - 3u^2 + 6u + 6\ln (u+1) + C$ (I know that u is positive so no need for absolute value here)Back subbing for x

$2(x^{1/6})^3 - 3(x^{1/6})^2 + 6(x^{1/6}) + 6 \ln (x^{1/6} + 1) + C$

Tidy up a bit

$2x^{1/2} - 3x^{1/3} + 6x^{1/6} + 6\ln (x^{1/6} + 1) + C$

$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} + 6 \ln (\sqrt[6]{x} + 1) + C$
 
lfdahl said:
Find the antiderivative ($ x > 0$):\[\int\frac{1}{x^{1/2}+x^{1/3}}dx\]

$\displaystyle \begin{align*} \int{\frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}}\,\mathrm{d}x} &= \int{\frac{1}{x^{\frac{3}{6}} + x^{\frac{2}{6}}}\,\mathrm{d}x} \\ &= \int{ \frac{1}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\mathrm{d}x} \\ &= \int{ \frac{6\,x^{\frac{5}{6}}}{6\,x^{\frac{5}{6}}\,\left[ \left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2 \right] }\,\mathrm{d}x } \\ &= \int{\frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x} \end{align*}$

Now let $\displaystyle \begin{align*} u = x^{\frac{1}{6}} \implies \mathrm{d}u = \frac{1}{6\,x^{\frac{5}{6}}}\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x } &= \int{\frac{6\,u^5}{u^3 + u^2}\,\mathrm{d}u} \\ &= \int{ \frac{6\,u^3}{u + 1}\,\mathrm{d}u } \\ &= 6 \int{ \left( u^2 - u + 1 - \frac{1}{u + 1}\right) \,\mathrm{d}u } \\ &= 6\,\left( \frac{u^3}{3} - \frac{u^2}{2} + u - \ln{ \left| u + 1 \right| } \right) + C \\ &= 2\,u^3 - 3\,u^2 + 6\,u - 6\ln{ \left| u + 1 \right| } + C \\ &= 2\,\left( x^{\frac{1}{6}} \right) ^3 - 3\,\left( x^{\frac{1}{6}} \right) ^2 + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \\ &= 2\,x^{\frac{1}{2}} - 3\,x^{\frac{1}{3}} + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \end{align*}$
 
Rido12 said:
If there are any mistakes -- apologies, doing this on my break.

Let $x=a^6 \implies dx=6a^5$
$$\int \frac{1}{x^{1/3}+x^{1/2}}dx=\int \frac{6a^5}{a^3+a^2}da=\int \frac{6a^3}{1+a}da$$
Let $b=a+1$
$$=\int \frac{6(b-1)^3}{b}db=6\int \frac{b^3-3b^2+3b-1}{b}db=6\int \left( b^2-3b+3-\frac{1}{b}\right) db$$
$$=6\left( \frac{b^3}{3}-\frac{3b^2}{2}+3b -\ln{b}\right)+C$$
$$=6\left( \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a) -\ln{(1+a)}\right)+C$$
$$=6\left( \frac{(1+x^{1/6})^3}{3}-\frac{3(1+x^{1/6})^2}{2}+3(1+x^{1/6}) -\ln{(1+x^{1/6})}\right)+C$$

Hi, Rido12

Thankyou for your solution, your method is correct:

- but you forgot to reduce the expression: \[ \frac{(1+a)^3}{3}-\frac{3(1+a)^2}{2}+3(1+a)\]

- - - Updated - - -

SuperSonic4 said:
Let $u = x^{1/6}$ hence $du = \dfrac{dx}{6x^{5/6}}$ and $dx = 6x^{5/6}du $

This can also be written in terms of $u$ as $dx = 6u^5 du$

Note that $x^{1/2} = x^{3/6} = u^3$ and also that $x^{1/3} = x^{2/6} = u^2$

Therefore the integral wrt u is now

$ 6\int \dfrac{u^5}{u^3 + u^2}$

I can cancel a $u^2$ as I am told that $x>0$ and so $u > 0$

$ 6 \int \dfrac{u^3}{u+1}$

Using long division to break this down (I don't know how to show this in Latex sorry)

$\dfrac{u^3}{u+1} = u^2-u+1-\dfrac{1}{u+1}$

Subsituting this back for the integrand gives

$6 \int \left(u^2 - u+1 - \dfrac{1}{u+1}\right) du = \int 6u^2 du - \int 6u du + \int 6du + \int \dfrac{6}{u+1} du$$2u^3 - 3u^2 + 6u + 6\ln (u+1) + C$ (I know that u is positive so no need for absolute value here)Back subbing for x

$2(x^{1/6})^3 - 3(x^{1/6})^2 + 6(x^{1/6}) + 6 \ln (x^{1/6} + 1) + C$

Tidy up a bit

$2x^{1/2} - 3x^{1/3} + 6x^{1/6} + 6\ln (x^{1/6} + 1) + C$

$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} + 6 \ln (\sqrt[6]{x} + 1) + C$

Good job, SuperSonic4! Thankyou for your participation!

- - - Updated - - -

Prove It said:
$\displaystyle \begin{align*} \int{\frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}}\,\mathrm{d}x} &= \int{\frac{1}{x^{\frac{3}{6}} + x^{\frac{2}{6}}}\,\mathrm{d}x} \\ &= \int{ \frac{1}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\mathrm{d}x} \\ &= \int{ \frac{6\,x^{\frac{5}{6}}}{6\,x^{\frac{5}{6}}\,\left[ \left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2 \right] }\,\mathrm{d}x } \\ &= \int{\frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x} \end{align*}$

Now let $\displaystyle \begin{align*} u = x^{\frac{1}{6}} \implies \mathrm{d}u = \frac{1}{6\,x^{\frac{5}{6}}}\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{6\,\left( x^{\frac{1}{6}} \right) ^5}{\left( x^{\frac{1}{6}} \right) ^3 + \left( x^{\frac{1}{6}} \right) ^2}\,\left( \frac{1}{6\,x^{\frac{5}{6}}} \right) \,\mathrm{d}x } &= \int{\frac{6\,u^5}{u^3 + u^2}\,\mathrm{d}u} \\ &= \int{ \frac{6\,u^3}{u + 1}\,\mathrm{d}u } \\ &= 6 \int{ \left( u^2 - u + 1 - \frac{1}{u + 1}\right) \,\mathrm{d}u } \\ &= 6\,\left( \frac{u^3}{3} - \frac{u^2}{2} + u - \ln{ \left| u + 1 \right| } \right) + C \\ &= 2\,u^3 - 3\,u^2 + 6\,u - 6\ln{ \left| u + 1 \right| } + C \\ &= 2\,\left( x^{\frac{1}{6}} \right) ^3 - 3\,\left( x^{\frac{1}{6}} \right) ^2 + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \\ &= 2\,x^{\frac{1}{2}} - 3\,x^{\frac{1}{3}} + 6\,x^{\frac{1}{6}} - 6\ln{ \left| x^{\frac{1}{6}} + 1 \right| } + C \end{align*}$
Awesome, Prove It! Thankyou for your participation!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top