yungman
- 5,741
- 291
The definition of Beam solid angle: For an antenna with single main lobe, the Beam solid angle defines as:
The solid angle \; \Omega_A\; where all the radiated power would flow with radiation intensity equal to maximum and constant inside the Beam solid angle \; \Omega_A\;.
The book gave:
\Omega_A\;=\; \int F(\theta,\phi) d \Omega \;\hbox{ where }\; F(\theta,\phi)=\frac { P_{av}(\theta, \phi)}{P_{max}}
But from the definition, the \; \Omega_A\; depend on the total power radiated divid by the \;P_{max}\; times the total steradians of the sphere.
Total power radiated = P_{Rad}=\int P_{av}(\theta,\phi) dS= \int R^2\;P_{av}(\theta,\phi)\;d\Omega
\Omega_A = 4\pi \frac { P_{Rad}(\theta,\phi)}{P_{max}} = 4\pi R^2 \frac{\int P_{av}(\theta,\phi) d\Omega} {P_{max}} = 4\pi R^2 \int \frac { P_{av}(\theta,\phi)}{P_{max}} d \Omega = 4\pi R^2 \int F(\theta,\phi) d\Omega
You see there is a \;4\pi R^2\; difference between the definition and the given formula, please help.
Thanks
Alan
The solid angle \; \Omega_A\; where all the radiated power would flow with radiation intensity equal to maximum and constant inside the Beam solid angle \; \Omega_A\;.
The book gave:
\Omega_A\;=\; \int F(\theta,\phi) d \Omega \;\hbox{ where }\; F(\theta,\phi)=\frac { P_{av}(\theta, \phi)}{P_{max}}
But from the definition, the \; \Omega_A\; depend on the total power radiated divid by the \;P_{max}\; times the total steradians of the sphere.
Total power radiated = P_{Rad}=\int P_{av}(\theta,\phi) dS= \int R^2\;P_{av}(\theta,\phi)\;d\Omega
\Omega_A = 4\pi \frac { P_{Rad}(\theta,\phi)}{P_{max}} = 4\pi R^2 \frac{\int P_{av}(\theta,\phi) d\Omega} {P_{max}} = 4\pi R^2 \int \frac { P_{av}(\theta,\phi)}{P_{max}} d \Omega = 4\pi R^2 \int F(\theta,\phi) d\Omega
You see there is a \;4\pi R^2\; difference between the definition and the given formula, please help.
Thanks
Alan
Last edited: