MHB What Is the Closest Integer to This Complex Summation?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integer
AI Thread Summary
The discussion focuses on calculating the closest integer to the summation S defined as S = ∑ from a=10 to 2011 of √(1 + (a² + (a+1)²)/(a(a+1))²). Initial calculations reveal that the terms simplify to a pattern where √(1 + (a² + (a+1)²)/(a(a+1))²) equals (a² + a + 1)/(a(a+1)). This leads to the conclusion that S can be expressed as S = 2002 + 1/10 - 1/2012. After evaluating this expression, the closest integer to S is determined to be 2002. The final result confirms that the closest integer to the complex summation is indeed 2002.
Albert1
Messages
1,221
Reaction score
0
please find the closest integer to S

$S=\sum_{a=10}^{2011}\sqrt{1+\dfrac{a^2+(a+1)^2}{(a(a+1))^2}}$
 
Mathematics news on Phys.org
Albert said:
please find the closest integer to S

$S=\sum_{a=10}^{2011}\sqrt{1+\dfrac{a^2+(a+1)^2}{(a(a+1))^2}}$
$\sqrt{1+\dfrac{a^2+(a+1)^2}{(a(a+1))^2}}$ looks a bit daunting, so why not get out your calculator and see what the first few terms of that sum look like? Putting $a=10$, we get $$\sqrt{1+\dfrac{100+121}{110^2}} = \sqrt{1+\frac{221}{12100}} = \sqrt{\frac{12321}{12100}} = \frac{111}{110}.$$ That's interesting, $12321$ turns out to be a perfect square! Is that just a coincidence? Try the next term, $a=11$. Then we get $$\sqrt{1+\dfrac{121+144}{132^2}} = \sqrt{1+\frac{265}{17424}} = \sqrt{\frac{17689}{17424}} = \frac{133}{132}.$$ No, that can't be a coincidence. What's more, in each case the numerator is just $1$ more than the denominator, which is fairly clearly equal to $a(a+1).$ It must be true that $$\sqrt{1+\dfrac{a^2+(a+1)^2}{(a(a+1))^2}} = \frac{a^2+a+1}{a(a+1)} = 1+ \frac1a - \frac1{a+1}.$$ So the first thing to do is to verify that fact. Then use it to get a good expression for the sum of the series.
 
yes ,you got it (Yes)

S=$2002+\dfrac{1}{10}-\dfrac{1}{2012}$

and the integer closest to S is 2002
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top