MHB What is the correct solution for $\int_{0}^{1}x\sqrt{18-2x^2} \,dx$?

Click For Summary
The integral $\int_{0}^{1}x\sqrt{18-2x^2} \,dx$ can be solved using the substitution $u= 18-2x^2$, leading to $du=-4xdx$. The correct evaluation of the integral results in $\frac{1}{4} \int_{16}^{18} \sqrt{u} \,du$, which simplifies to $9\sqrt{2} - \frac{32}{3}$. The mistake in the initial calculation stemmed from incorrectly handling the limits of integration and the negative sign in the substitution. The final answer for the integral is confirmed as $9\sqrt{2} - \frac{32}{3}$.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Hello,

I need some help finding the integral
$\int_{0}^{1}x\sqrt{18-2x^2} \,dx$
Let $u= 18-2x^2$
$du=-4xdx$
$-1/4 \int_{16}^{18} \sqrt{u} \,du$= $36 sqrt(2) -128/3$

I am getting the wrong solution: $9\sqrt(2)-32/3$
 
Physics news on Phys.org
Cbarker1 said:
Hello,

I need some help finding the integral
$\int_{0}^{1}x\sqrt{18-2x^2} \,dx$
Let $u= 18-2x^2$
$du=-4xdx$
$-1/4 \int_{16}^{18} \sqrt{u} \,du$= $36 sqrt(2) -128/3$

I am getting the wrong solution: $9\sqrt(2)-32/3$

Hi Cbarker1! ;)

The intermediate result should be:
$$-1/4 \int_{18}^{16} \sqrt{u} \,du$$
Integrating it, we get:
$$-\frac 14 \int_{18}^{16} \sqrt{u} \,du
=\frac 14 \int_{16}^{18} \sqrt{u} \,du
=\frac 14\cdot \frac 23 u^{\frac 32}\Big|_{16}^{18}
=\frac 16({18}^{\frac 32}-16^{\frac 32})
=\frac 16((3\sqrt 2)^3 -4^3)
=\frac 16(54\sqrt 2-64)
=9 \sqrt 2-\frac{32}3
$$
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K