What is the definition of D^m delta(e^D) in this formula?

  • Thread starter Thread starter mhill
  • Start date Start date
  • Tags Tags
    Formula Strange
mhill
Messages
180
Reaction score
1
let be the identity

(2 \pi ) i^{m-1}D^{m} \delta (u) = \int_{-\infty}^{\infty} dx e^{iux}x^{m-1}`

then making the replacement u=e^D D derivative with respect to 'x' then

(2 \pi ) i^{m-1}D^{m} \delta (e^{D})f(0) = \int_{-\infty}^{\infty} dx e^{ixe^{D}}x^{m-1}f(0)=\int_{-\infty}^{\infty} dx x^{m-1}\sum_{k=0}^{\infty}\frac{i^{k}f(n)}{n!}

the problem is that i do not know how to define D^{m} \delta (e^{D})
 
Last edited by a moderator:
Physics news on Phys.org
Something is wrong with your latex expressions. They are unreadable.
 
Back
Top