What is the difference between negative charge and free electron?

AI Thread Summary
Electrons inherently carry a negative charge, making them synonymous with negative charge in discussions about electricity. A charged conductor, such as one with a charge of -1.0 μC, indicates an excess of electrons, specifically around 6.24 trillion electrons. This calculation is derived by dividing the total negative charge by the charge of a single electron. Understanding this relationship clarifies the distinction between negative charge and free electrons. The conversation emphasizes the fundamental nature of electrons in defining electrical charge.
Candies2002
Messages
2
Reaction score
1
Homework Statement
What is the difference between negative charge and free electron?
Relevant Equations
No. I wonder what is the difference between negative charge and free electron?
No.
 
Physics news on Phys.org
An electron carries negative charge. It is an electron.

A sheep has mass, but it is a sheep.

##\ ##
 
  • Like
  • Haha
Likes vela, rsk and Steve4Physics
When you see something like "the charge on a conductor is -1.0 μC" this says to you that the conductor is not neutral but has an excess of 6,241,509,074,460 electrons on it (give or take a few). You get that number by dividing the negative charge by the charge of one electron.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top