What Is the Estimated Entropy of the Final Crunch in a Closed Universe?

  • Thread starter Thread starter avery
  • Start date Start date
  • Tags Tags
    Black hole Hole
avery
Messages
24
Reaction score
0
Roger Penrose said:
we are considering a closed universe so eventually it should recollapse, and to estimate the entropy of the final cruch by using the Bekenstein-Hawking Formula as though the whole universe had formed, would give an entropy per baryon of 10 to the 43rd power, and the ‘absolutely stupendous total’ for the enture big crunch being 10 to the 123rd power.
what he meant by that ?
thank you.
 
Last edited:
Physics news on Phys.org
He said, "as though." He's just using a black hole as an analogy to make a very crude estimate for the total entropy.
 
Bill_K said:
He said, "as though." He's just using a black hole as an analogy to make a very crude estimate for the total entropy.
thank you Bill_K for the clarification.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top