I What is the importance of p-Sylow subgroups in understanding group structure?

  • I
  • Thread starter Thread starter Santiago24
  • Start date Start date
Santiago24
Messages
32
Reaction score
6
Hi, I'm reading about p-Sylow subgroups from "Algebra" by Serge Lang and for me the definition of p-Sylow subgroups is a very specific type of subgroup, i know that find a p-Sylow subgroup isn't so weird but, what is the use of this kind of groups?
 
Physics news on Phys.org
If you have a finite group, then the first question that comes up is: what is the group structure? This means, which are the normal subgroups, does it split into a direct product, or at least a semidirect product, and so on.

If you look into (last attachment)
Problems with Solutions (complete).pdf on
https://www.physicsforums.com/threads/solution-manuals-for-the-math-challenges.977057/
and search for 'Sylow' (38 occurrences), then you find a lot of examples.

It is basically all about the structure of groups.
 
fresh_42 said:
If you have a finite group, then the first question that comes up is: what is the group structure? This means, which are the normal subgroups, does it split into a direct product, or at least a semidirect product, and so on.

If you look into (last attachment)
Problems with Solutions (complete).pdf on
https://www.physicsforums.com/threads/solution-manuals-for-the-math-challenges.977057/
and search for 'Sylow' (38 occurrences), then you find a lot of examples.

It is basically all about the structure of groups.
Thanks!
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top