What is the least time to get from point ##A## to point ##B##

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Point Time
AI Thread Summary
The discussion focuses on calculating the least time required for a cyclist to travel from point A to point B, using the equations of motion. The calculated time is 22 seconds, which aligns with the textbook answer. However, some participants express concerns about the lack of units in the equations and the notation used in the calculations. Suggestions are made to analyze the cyclist's motion using a velocity vs. time graph for better clarity. Overall, the approach is validated, but improvements in presentation and notation are recommended.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
A cyclist travels from point ##A## to ##B##, a distance of ##240## metres. He passes ##A## at ##12## m/s, maintains this speed for as long as he can, and then breaks so that he comes to a stop at ##B##. If the maximum deceleration he can achieve when braking is 3 m/s^2, what is the least time in which he can get from ##A## to ##B##?
Relevant Equations
Velocity and acceleration
My approach;

##v=u+at##

##0=12-3t##

##t=4##

i.e at point when deceleration starts up to the point cyclist stopped (point ##B##).

Therefore, distance travelled in the ##4## seconds is given by,

##s=(12×4)+(0.5×-3×16)=48-24=24##m

##⇒240-24=216##m

##t=\dfrac{216}{12}=18 ##seconds.

Therefore least time taken is ##4+18=22## seconds.

Text book has only given the answer ##22##

your insight or alternative approach is welcome.
 
Physics news on Phys.org
Your approach is correct and I would have done it the same way.

Two things I don't appreciate: the lack of units in the intermediate equations and the fact that you have not stated the equation for ##s## you are using. Also ##0.5 \times -3 \times 16## is not proper mathematics, that should be ##0.5 \times (-3) \times 16##.
 
Try analyzing the cyclist's motion using a velocity vs. time graph.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top