MHB What is the limit of the sequence {$a_n$}?

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Limit Sequence
Click For Summary
The sequence {$a_n$} is defined by $a_1 = 1$ and $a_n = \frac{1}{1+a_{n-1}}$ for $n \ge 2. The limit of the sequence is determined by finding the attractive fixed point of the function $f(a_n) = \frac{1}{1 + a_n}$. This fixed point is calculated to be $\xi = \frac{\sqrt{5}-1}{2} \approx 0.618$. The sequence converges to this limit for any initial value $x_0 > -1$. The discussion remains open for alternative methods to find the limit.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let the sequence {$a_n$} be defined by $a_1 = 1$ and $a_n = \frac{1}{1+a_{n-1}}$

for $n \ge 2$ . Find the limit.
 
Mathematics news on Phys.org
lfdahl said:
Let the sequence {$a_n$} be defined by $a_1 = 1$ and $a_n = \frac{1}{1+a_{n-1}}$ for $n \ge 2$ . Find the limit.
[sp]The difference equation can be written as... $\displaystyle \Delta_{n} = a_{n=1} - a_{n} = \frac {1}{1 + a{n}} - a_{n}= \frac{1 - a_{n} - a^{2}_{n}}{1 + a_{n}}= f(a_{n})\ (1)$ ... and there is the only attractive fixed point of f(x) in $\displaystyle \xi = \frac {\sqrt{5}-1}{2} = .618...$, so that for any $x_{0}> - 1$ he sequence tends to $\xi$...[/sp] Kind regards $\chi$ $\sigma$
 
Last edited:
Thankyou, chisigma, for your valuable and correct contribution!:cool:
The thread is still open for alternative approaches.
 
Substitute $a_n$ repeatedly i.e
$$a_n=\frac{1}{1+a_{n-1}}=\frac{1}{1+\frac{1}{1+a_{n-2}}}=\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}$$
Since $n\rightarrow \infty$, we can write:
$$a_n=\frac{1}{1+a_n}$$
$$\Rightarrow a_n^2+a_n-1=0$$
$$\Rightarrow a_n=\frac{\sqrt{5}-1}{2}$$
 
Pranav said:
Substitute $a_n$ repeatedly i.e
$$a_n=\frac{1}{1+a_{n-1}}=\frac{1}{1+\frac{1}{1+a_{n-2}}}=\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}$$
Since $n\rightarrow \infty$, we can write:
$$a_n=\frac{1}{1+a_n}$$
$$\Rightarrow a_n^2+a_n-1=0$$
$$\Rightarrow a_n=\frac{\sqrt{5}-1}{2}$$

Correct, short and consistent solution Pranav. Well done!(Nod)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
684
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K