MHB What is the limit of the sequence {$a_n$}?

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Limit Sequence
AI Thread Summary
The sequence {$a_n$} is defined by $a_1 = 1$ and $a_n = \frac{1}{1+a_{n-1}}$ for $n \ge 2. The limit of the sequence is determined by finding the attractive fixed point of the function $f(a_n) = \frac{1}{1 + a_n}$. This fixed point is calculated to be $\xi = \frac{\sqrt{5}-1}{2} \approx 0.618$. The sequence converges to this limit for any initial value $x_0 > -1$. The discussion remains open for alternative methods to find the limit.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let the sequence {$a_n$} be defined by $a_1 = 1$ and $a_n = \frac{1}{1+a_{n-1}}$

for $n \ge 2$ . Find the limit.
 
Mathematics news on Phys.org
lfdahl said:
Let the sequence {$a_n$} be defined by $a_1 = 1$ and $a_n = \frac{1}{1+a_{n-1}}$ for $n \ge 2$ . Find the limit.
[sp]The difference equation can be written as... $\displaystyle \Delta_{n} = a_{n=1} - a_{n} = \frac {1}{1 + a{n}} - a_{n}= \frac{1 - a_{n} - a^{2}_{n}}{1 + a_{n}}= f(a_{n})\ (1)$ ... and there is the only attractive fixed point of f(x) in $\displaystyle \xi = \frac {\sqrt{5}-1}{2} = .618...$, so that for any $x_{0}> - 1$ he sequence tends to $\xi$...[/sp] Kind regards $\chi$ $\sigma$
 
Last edited:
Thankyou, chisigma, for your valuable and correct contribution!:cool:
The thread is still open for alternative approaches.
 
Substitute $a_n$ repeatedly i.e
$$a_n=\frac{1}{1+a_{n-1}}=\frac{1}{1+\frac{1}{1+a_{n-2}}}=\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}$$
Since $n\rightarrow \infty$, we can write:
$$a_n=\frac{1}{1+a_n}$$
$$\Rightarrow a_n^2+a_n-1=0$$
$$\Rightarrow a_n=\frac{\sqrt{5}-1}{2}$$
 
Pranav said:
Substitute $a_n$ repeatedly i.e
$$a_n=\frac{1}{1+a_{n-1}}=\frac{1}{1+\frac{1}{1+a_{n-2}}}=\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}$$
Since $n\rightarrow \infty$, we can write:
$$a_n=\frac{1}{1+a_n}$$
$$\Rightarrow a_n^2+a_n-1=0$$
$$\Rightarrow a_n=\frac{\sqrt{5}-1}{2}$$

Correct, short and consistent solution Pranav. Well done!(Nod)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top