Dethrone
- 716
- 0
Prove that $\lim_{{n}\to{\infty}}\frac{x^n}{n!}=0$.
Rido12 said:Prove that $\lim_{{n}\to{\infty}}\frac{x^n}{n!}=0$.
MarkFL said:My solution:
By the Stolz–Cesàro theorem, we may state:
$$\lim_{n\to\infty}\frac{x^n}{n!}=\lim_{n\to\infty}\frac{x^{n+1}-x^n}{(n+1)!-n!}=\lim_{n\to\infty}\left(\frac{x^n}{n!}\cdot\frac{x-1}{n}\right)=\left(\lim_{n\to\infty}\frac{x^n}{n!}\right)\cdot0=0$$
ZaidAlyafey said:I don't think this is a valid proof since you are assuming that the limit exists.
MarkFL said:The Stolz–Cesàro theorem asserts that if the limit:
$$\lim_{n\to\infty}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=L$$
exists, then the limit:
$$\lim_{n\to\infty}\frac{a_{n}}{b_{n}}=L$$
also exists and is equal to $L$.
ZaidAlyafey said:For the proof of the first statement you are using the second statement which is what we want to prove.
ZaidAlyafey said:For the proof of the first statement you are using the second statement which is what we want to prove.