MHB What is the maximum and minimum value of k?

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0

Attachments

  • max(k) and min(k).jpg
    max(k) and min(k).jpg
    15.1 KB · Views: 116
Mathematics news on Phys.org
We have k = a + b+ d + e
k = c + d + g + h
k = f + g + i + j

add all 3 to get 3k = a+b+c+d+e+f+g+h+i + (d+g) = 65+ (d+g) as sum of numbers 65 + d +g is multiple of 3

for the lowest
we need to choose d+g lowest such that 65 + d +g is multiple of 3 and d + g is lowest. Do d+g mod 3 = 1 , it canntot be 1 or 4 as the lowest is 2+ 3 = 5 so 7
that gives d = 2 ; g =5 and lowest sum = 24 ( there is more than one solution and one is given below)
( a = 10, b= 8, d = 2, e = 4, c = 11, g= 5, h = 6, f = 9, i = 5, j = 3) satisfies it
for the highest
we need to choose d+g highest such that + d +g is multiple of 3 and d + g is highest . Do d+g mod 3 = 1 , it < 21 so it is 20
that gives d = 10 ; g =9 and lowest sum = 24
( a = 7, b= 3, d = 10, e = 8, c = 5, g= 9, h = 4, f = 11, i = 2, j = 6) satisfies it
Lowest k = 24, highest k = 28
 
kaliprasad said:
We have k = a + b+ d + e
k = c + d + g + h
k = f + g + i + j

add all 3 to get 3k = a+b+c+d+e+f+g+h+i + (d+g) = 65+ (d+g) as sum of numbers 65 + d +g is multiple of 3

for the lowest
we need to choose d+g lowest such that 65 + d +g is multiple of 3 and d + g is lowest. Do d+g mod 3 = 1 , it canntot be 1 or 4 as the lowest is 2+ 3 = 5 so 7
that gives d = 2 ; g =5 and lowest sum = 24 ( there is more than one solution and one is given below)
( a = 10, b= 8, d = 2, e = 4, c = 11, g= 5, h = 6, f = 9, i = 5, j = 3) satisfies it
for the highest
we need to choose d+g highest such that + d +g is multiple of 3 and d + g is highest . Do d+g mod 3 = 1 , it < 21 so it is 20
that gives d = 10 ; g =9 and lowest sum = 24
( a = 7, b= 3, d = 10, e = 8, c = 5, g= 9, h = 4, f = 11, i = 2, j = 6) satisfies it
Lowest k = 24, highest k = 28
yes, your answer is correct :)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top