Basically, you are just facing a two-dimensional version of a familiar one-dimensional phenomenon. Take, for example, the simple function f(x) = x^2 in 1-d. If you set f'(x) = 0 you get x = 0 as the (only) stationary point. However, x = 0 is a minimum---the global minimum in this case---and there is NO maximum at all.
The "theorems" about solving for max and or min by finding stationary points will (if stated properly) have hypotheses about the max and/or min actually existing in the region of interest. Just having a stationary point does not guarantee having an optimum, certainly not in a problem where there is no optimum. Example: f(x) = x^3 has no max and no min, but x = 0 is a stationary point.
In your example, the point (x,y) = (4,4) is a (constrained) global min; there are second-order tests to ascertain this fact, but they tend to be a bit lengthy for use on a short class-quiz: they involve looking at the Hessian matrix of the Lagrangian in the tangent subspace of the constraint! However, in your case you can reduce the whole problem to a 1-d case by putting y = 16/x and then looking at max/min f(x) = (x + 16/x), x>0.