Undergrad What is the outer product of a tensor product of vectors?

Click For Summary
SUMMARY

The discussion centers on the definition and properties of the outer product in the context of tensor products of vectors within single-particle Hilbert spaces, specifically ##\mathcal{H}_{1}## and ##\mathcal{H}_{2}##. It establishes that the outer product of two state vectors can be expressed as $$\lvert a,b\rangle\langle c,d\rvert =\lvert a\rangle\langle c\rvert\otimes\lvert b\rangle\langle d\rvert$$, which is crucial for understanding operations on the product space ##\mathcal{H}_{1}\otimes\mathcal{H}_{2}##. The discussion also emphasizes the importance of proper notation and the equivalence of different expressions involving outer products and tensor products, particularly when applying these concepts to elements of the product space.

PREREQUISITES
  • Understanding of single-particle Hilbert spaces, specifically ##\mathcal{H}_{1}## and ##\mathcal{H}_{2}##.
  • Familiarity with tensor products and their notation in quantum mechanics.
  • Knowledge of inner and outer products in the context of quantum states.
  • Basic grasp of operator theory in quantum mechanics.
NEXT STEPS
  • Explore the properties of tensor products in quantum mechanics.
  • Study the concept of partial traces and their applications in quantum information theory.
  • Learn about the role of operators in Hilbert spaces and their implications in quantum mechanics.
  • Investigate the mathematical foundations of quantum state representations and transformations.
USEFUL FOR

Quantum physicists, mathematicians specializing in functional analysis, and students studying quantum mechanics who seek a deeper understanding of tensor products and outer products in Hilbert spaces.

Frank Castle
Messages
579
Reaction score
23
If one has two single-particle Hilbert spaces ##\mathcal{H}_{1}## and ##\mathcal{H}_{2}##, such that their tensor product ##\mathcal{H}_{1}\otimes\mathcal{H}_{2}## yields a two-particle Hilbert space in which the state vectors are defined as $$\lvert\psi ,\phi\rangle =\lvert\psi\rangle\otimes\lvert\phi\rangle\in\mathcal{H}_{1}\otimes\mathcal{H}_{2}$$ where ##\lvert\psi\rangle\in\mathcal{H}_{1}## and ##\lvert\phi\rangle\in\mathcal{H}_{2}##.

Now, the inner product for ##\mathcal{H}_{1}\otimes\mathcal{H}_{2}## is defined such that $$\langle\phi ,\psi\vert\psi ,\phi\rangle =\left(\langle\phi\rvert\otimes\langle\psi\lvert\right)\left(\lvert\psi\rangle\otimes\lvert\phi\rangle\right) =\langle\psi\lvert\psi\rangle_{1}\langle\phi\lvert\phi\rangle_{2}$$ where ##\langle\cdot\lvert\cdot\rangle_{1}## is the inner product defined on ##\mathcal{H}_{1}## and ##\langle\cdot\lvert\cdot\rangle_{2}## the inner product defined on ##\mathcal{H}_{2}##.

How though is the outer product defined? Is it simply $$\lvert\psi ,\phi\rangle\langle\phi ,\psi\rvert =\lvert\psi\rangle\otimes\lvert\phi\rangle\langle\phi\rvert\otimes\langle\psi\rvert =\lvert\psi\rangle\langle\psi\rvert_{1} \lvert\phi\rangle\langle\phi\rvert_{2}$$ where ##\lvert\psi\rangle\langle\psi\rvert_{1}## is the outer product in ##\mathcal{H}_{1}## and ##\lvert\phi\rangle\langle\phi\rvert_{2}## is the outer product in ##\mathcal{H}_{2}##.
 
Physics news on Phys.org
It might be easier to think of more general outer products, rather than the outer product of an element with itself, as you have written.
That is, consider the outer product ##|a,b\rangle\langle c,d|=|a\rangle\otimes |b\rangle\langle c|\otimes\langle d|##.

This is an operator on the product space ##\mathcal{H}_{1}\otimes\mathcal{H}_{2}##. To see what it does, we apply it to an element of that space ##|e,f\rangle=|e\rangle\otimes |f\rangle##.

The result is ##|a,b\rangle \langle c|e\rangle \langle d|f\rangle##
 
andrewkirk said:
This is an operator on the product space H1⊗H2\mathcal{H}_{1}\otimes\mathcal{H}_{2}. To see what it does, we apply it to an element of that space |e,f⟩=|e⟩⊗|f⟩|e,f\rangle=|e\rangle\otimes |f\rangle.

The result is |a,b⟩⟨c|e⟩⟨d|f⟩

So one can't define it as ##\lvert a,b\rangle\langle c,d\rvert =\lvert a\rangle\langle c\rvert\lvert b\rangle\langle d\rvert## then? Should it be something like $$\lvert a,b\rangle\langle c,d\rvert =\lvert a\rangle\langle c\rvert\otimes\lvert b\rangle\langle d\rvert$$

I ask in particular as I'm trying to understand the notion of a partial trace.
 
Last edited:
Frank Castle said:
So one can't define it as ##\lvert a,b\rangle\langle c,d\rvert =\lvert a\rangle\langle c\rvert\lvert b\rangle\langle d\rvert## then?
That symbol string on the RHS is not intrinsically meaningful. It juxtaposes the two operators ##\lvert a\rangle\langle c\rvert## and ##\lvert b\rangle\langle d\rvert## but:
- since they are not scalars, the juxtaposition cannot be interpreted as scalar multiplication
- since they are operators on different spaces (##\mathcal H_1## and ##\mathcal H_2##), the juxtaposition cannot be interpreted as composition of operation.

Should it be something like $$\lvert a,b\rangle\langle c,d\rvert =\lvert a\rangle\langle c\rvert\otimes\lvert b\rangle\langle d\rvert$$
That is one of a number of intrinsically meaningful ways of writing it. It has the same meaning as what I wrote above ##(
|a\rangle\otimes |b\rangle)(\langle c|\otimes\langle d|)## (I have added parentheses here that were only implied above, to make it clear what operations are being performed).
 
andrewkirk said:
That is one of a number of intrinsically meaningful ways of writing it. It has the same meaning as what I wrote above (|a⟩⊗|b⟩)(⟨c|⊗⟨d|)

How does one show that the two expressions are equivalent? Would it be something like this:
$$\left(\lvert a\rangle\otimes\lvert b\rangle\langle c\rvert\otimes\langle d\rvert\right)\lvert e\rangle\otimes\lvert f\rangle =\lvert a\rangle\otimes\lvert b\rangle\left(\langle c\vert e\rangle\langle d\vert f\rangle\right)\\ =\left(\lvert a\rangle\langle c\vert e\rangle\right)\otimes \left(\lvert b\rangle\langle d\vert f\rangle\right) =\left(\lvert a\rangle\langle c\lvert\otimes\lvert b\rangle\langle d\lvert\right)\lvert e\rangle\otimes\lvert f\rangle$$
 
I would write it as follows:

$$(|a,b\rangle\langle c,d|)|e,f\rangle\equiv (|a\rangle\otimes|b\rangle)(\langle c|\otimes\langle d|)(|e\rangle\otimes|f\rangle)=(\langle c|e\rangle|a\rangle)\otimes (\langle d|f\rangle|b\rangle)$$
and
$$(|a\rangle\langle c|\otimes|b\rangle\langle d|)|e,f\rangle\equiv
(|a\rangle\langle c|\otimes|b\rangle\langle d|)(|e\rangle\otimes |f\rangle)\
=(|a\rangle\langle c|)|e\rangle\otimes (|b\rangle\langle d|)|f\rangle
\equiv (\langle c|e\rangle|a\rangle)\otimes (\langle d|f\rangle|b\rangle)
$$
So
$$(|a,b\rangle\langle c,d|)=(|a\rangle\langle c|\otimes|b\rangle\langle d|)$$
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
878
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K