What is the probability that a subgraph of a connected graph is also connected?

  • Thread starter Thread starter samirg
  • Start date Start date
  • Tags Tags
    Graphs
samirg
Messages
2
Reaction score
0
Hi Guys
I need some help on graph connectivity problem.
Given a graph is connected with probability p, what is the probablity that its subgraph is also connected?
In other words, we have to find the probablity that a subgraph of a connected graph is connected?

I hope i have made my question clear. Any help in this matter is really appreciated.

Thanks

Samir
 
Mathematics news on Phys.org
It is impossible to answer the question without you saying more about the original graph. Given a "star graph" ie one central node and all vertices rays from it, then any subgraph must be connected, given another graph this will almost certainly fail to be true.
 
connectivity of graph(problem redefinition)

matt grime said:
It is impossible to answer the question without you saying more about the original graph. Given a "star graph" ie one central node and all vertices rays from it, then any subgraph must be connected, given another graph this will almost certainly fail to be true.

Hi matt

The problem can be stated as
Given a random graph G(n,p) where n is number of nodes in the graph and p is the probability that an edge exits between two nodes, (when p=0 graph does not have any edges and when p = 1 graph is fully connected.) then if i take a subgraph of this random graph based on criteria that all the nodes of this subgraph are at a particular distance from one fixed node, then what is the probability that this subgraph is connected? I want to know whether this probability will be less than p, and if yes how much less?

I hope this makes question a bit clearer.

Thanks again

Samir
 
Double and triple posting is generally frowned upon.

Now you've introduced the word distance. the usual distance on graph is the length of the shortest path between nodes, which when defined explicitly tells you the subgraph you've picked must be connected (assuming the fixed node is in the subgraph).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top