MHB What is the probability that exactly 8 of them are over the age of 65

  • Thread starter Thread starter Crowbarr
  • Start date Start date
  • Tags Tags
    Age Probability
AI Thread Summary
The discussion focuses on calculating probabilities using the binomial distribution for coronary bypass patients, specifically regarding the age of patients over 65. It cites that 53% of coronary bypass surgery patients were over 65 in 2008 and involves a sample of 15 patients. The calculations for various scenarios, such as exactly 8 patients over 65 and probabilities for fewer or more than 10, are explained using the binomial formula. The thread also questions the participants' understanding of probability concepts, suggesting they should attempt to solve the problems independently. Overall, the emphasis is on applying binomial distribution principles to derive the required probabilities.
Crowbarr
Messages
1
Reaction score
0
2) The Agency for Healthcare Research and Quality reported that 53% of people who had coronary bypass surgery in 2008 were over the age of 65. Fifteen coronary bypass patients are sampled.

a) What is the probability that exactly 8 of them are over the age of 65?

b) P (less than 10 are over 65) =

c) P (more than 10 are over 65) =

d) P (11 or fewer are over 65) =

e) P ( more than 11 are over 65) =
 
Mathematics news on Phys.org
I am puzzled by this thread. If you have never taken a course in "probability and statistics" where did you get these exercises? If you have, or are now taking such a course, why have you shown no attempt to answer these yourself?

They are all applications of the basic "binomial distribution": if the probability a particular event will result in "a" is p and the probability it will result is "b" is 1- p, the probability that, in n events, it will result in "a" i times and "b" n-i times with probability [math]\begin{pmatrix}n \\ I \end{pmatrix}p^i(1- p)^{n-I}[/math].

Here, "a" is "a person who had coronary bypass surgery is over 65", p= 0.53, "b" is "a person who had coronary bypass surgery is NOT over 65", and 1- p= 1- 0.53= 0.47. n= 15. [math\begin{pmatrix} n \\ i\/end{pmatrix}[/math] is the "binomial coefficient", [math]\frac{n!}{i!(n-i)!}[/math].

In problem (a) i= 8.
in problem (b) it is simplest to calculate that for i= 10, 11, 12, 13, 14, and 15, add them (to determine the probability "10 or more are over 65") and subtract from 1. The harder way is to calculate that for i= 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 and add.
In problem (c) you can use the number you got before you subtracted from 1!
In problem (d) "11 or fewer" is the same as "less than 12" so you can do the same as (c), calculate the probability for i= 12, 13, 14, 15 and subtract from 1.
 
Last edited by a moderator:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top