What is the purpose of the decay time distribution equation?

Click For Summary
SUMMARY

The decay time distribution equation, denoted as D(t), represents the time-dependent probability that a muon decays within a specific time interval, defined mathematically as D(t) = λ exp(−λt). The decay rate λ is crucial for calculating D(t), as it influences the decay probability. The relationship between the population of muons and time is expressed through the equation N(t) = N0 exp(−λt), where N0 is the initial population. Understanding D(t) is essential for estimating decay rates at future points, assuming λ is already known.

PREREQUISITES
  • Understanding of exponential decay functions
  • Familiarity with muon decay processes
  • Knowledge of probability distributions
  • Basic calculus for integration and differentiation
NEXT STEPS
  • Study the derivation of exponential decay equations in particle physics
  • Learn about the significance of the decay constant λ in radioactive decay
  • Explore applications of decay time distribution in experimental physics
  • Investigate the relationship between decay rates and half-life calculations
USEFUL FOR

Students and researchers in physics, particularly those focusing on particle physics and decay processes, as well as educators teaching concepts related to exponential decay and probability distributions.

tryingtolearn1
Messages
58
Reaction score
5
Homework Statement
Muons decay time distribution
Relevant Equations
##N(t) = N_0 exp(−\lambda t)## and ##D(t) = \lambda \exp(−\lambda t)##
I know for muons that the the probability that a muon decays in some small time interval ##dt## is ##\lambda dt##, where ##\lambda## is a decay rate. Thus the change in the population of muons is just ##dN/N(t) = −\lambda dt##. Integrating gives ##N(t) = N_0 \exp(−\lambda t)##. This makes sense to me but my book goes on to say the following,

By decay time distribution D(t), we mean that the time-dependent probability that a muon decays in the time interval between ##t## and ##t + dt## is given by ##D(t)dt##. If we had started with ##N_0## muons, then the fraction ##−dN/N_0## that would on average decay in the time interval between ##t## and ##t + dt## is just given by differentiating the above relation: ##−dN = N_0\lambda \exp(−\lambda t) dt## ##\therefore## ##−dN/ N_0 = \lambda \exp(−\lambda t) dt##. The left-hand side of the last equation is nothing more than the decay probability, so ##D(t) = \lambda \exp(−\lambda t)##.

What exactly is that explaining? Don't we need to know what ##\lambda## is before using the ##D(t)## equation? Because trying to find ##\lambda## using ##D(t) = \lambda \exp(−\lambda t)## will give the wrong results.
 
Physics news on Phys.org
tryingtolearn1 said:
Homework Statement:: Muons decay time distribution
Relevant Equations:: ##N(t) = N_0 exp(−\lambda t)## and ##D(t) = \lambda \exp(−\lambda t)##

I know for muons that the the probability that a muon decays in some small time interval ##dt## is ##\lambda dt##, where ##\lambda## is a decay rate. Thus the change in the population of muons is just ##dN/N(t) = −\lambda dt##. Integrating gives ##N(t) = N_0 \exp(−\lambda t)##. This makes sense to me but my book goes on to say the following,
What exactly is that explaining? Don't we need to know what ##\lambda## is before using the ##D(t)## equation? Because trying to find ##\lambda## using ##D(t) = \lambda \exp(−\lambda t)## will give the wrong results.
I'm not entirely sure what you are asking, but it looks to me that D(t) is defined as ##\frac{P(decay in interval (t,t+dt))}{dt}##, whereas the ##\lambda dt## expression assumes it has not decayed at time t.
So D(t)=P(undecayed_at_time (t))λ = ##\lambda \exp(−\lambda t)##
 
haruspex said:
I'm not entirely sure what you are asking, but it looks to me that D(t) is defined as ##\frac{P(decay in interval (t,t+dt))}{dt}##, whereas the ##\lambda dt## expression assumes it has not decayed at time t.
So D(t)=P(undecayed_at_time (t))λ = ##\lambda \exp(−\lambda t)##
Hmm but why would that equation be relevant? Suppose you know what ##t## is and you're trying to find ##\lambda##, why would ##D(t)=\lambda\exp(-\lambda t)## be relevant?
 
tryingtolearn1 said:
Hmm but why would that equation be relevant? Suppose you know what ##t## is and you're trying to find ##\lambda##, why would ##D(t)=\lambda\exp(-\lambda t)## be relevant?
I see no suggestion that this is to do with finding λ. Rather, it assumes you have already determined λ and now wish to estimate the rate of decays in a sample at some future point.
 
  • Like
Likes   Reactions: tryingtolearn1

Similar threads

Replies
46
Views
5K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K