What is the purpose of the decay time distribution equation?

AI Thread Summary
The decay time distribution equation, D(t), represents the time-dependent probability of a muon decaying within a specific interval. It is defined as D(t) = λ exp(−λt), where λ is the decay rate. The discussion clarifies that D(t) is used to estimate decay rates given a known λ, rather than to determine λ itself. The relationship between D(t) and the decay probability emphasizes that D(t) assumes the muons have not decayed at time t. Understanding this distinction is crucial for applying the decay time distribution correctly in calculations.
tryingtolearn1
Messages
58
Reaction score
5
Homework Statement
Muons decay time distribution
Relevant Equations
##N(t) = N_0 exp(−\lambda t)## and ##D(t) = \lambda \exp(−\lambda t)##
I know for muons that the the probability that a muon decays in some small time interval ##dt## is ##\lambda dt##, where ##\lambda## is a decay rate. Thus the change in the population of muons is just ##dN/N(t) = −\lambda dt##. Integrating gives ##N(t) = N_0 \exp(−\lambda t)##. This makes sense to me but my book goes on to say the following,

By decay time distribution D(t), we mean that the time-dependent probability that a muon decays in the time interval between ##t## and ##t + dt## is given by ##D(t)dt##. If we had started with ##N_0## muons, then the fraction ##−dN/N_0## that would on average decay in the time interval between ##t## and ##t + dt## is just given by differentiating the above relation: ##−dN = N_0\lambda \exp(−\lambda t) dt## ##\therefore## ##−dN/ N_0 = \lambda \exp(−\lambda t) dt##. The left-hand side of the last equation is nothing more than the decay probability, so ##D(t) = \lambda \exp(−\lambda t)##.

What exactly is that explaining? Don't we need to know what ##\lambda## is before using the ##D(t)## equation? Because trying to find ##\lambda## using ##D(t) = \lambda \exp(−\lambda t)## will give the wrong results.
 
Physics news on Phys.org
tryingtolearn1 said:
Homework Statement:: Muons decay time distribution
Relevant Equations:: ##N(t) = N_0 exp(−\lambda t)## and ##D(t) = \lambda \exp(−\lambda t)##

I know for muons that the the probability that a muon decays in some small time interval ##dt## is ##\lambda dt##, where ##\lambda## is a decay rate. Thus the change in the population of muons is just ##dN/N(t) = −\lambda dt##. Integrating gives ##N(t) = N_0 \exp(−\lambda t)##. This makes sense to me but my book goes on to say the following,
What exactly is that explaining? Don't we need to know what ##\lambda## is before using the ##D(t)## equation? Because trying to find ##\lambda## using ##D(t) = \lambda \exp(−\lambda t)## will give the wrong results.
I'm not entirely sure what you are asking, but it looks to me that D(t) is defined as ##\frac{P(decay in interval (t,t+dt))}{dt}##, whereas the ##\lambda dt## expression assumes it has not decayed at time t.
So D(t)=P(undecayed_at_time (t))λ = ##\lambda \exp(−\lambda t)##
 
haruspex said:
I'm not entirely sure what you are asking, but it looks to me that D(t) is defined as ##\frac{P(decay in interval (t,t+dt))}{dt}##, whereas the ##\lambda dt## expression assumes it has not decayed at time t.
So D(t)=P(undecayed_at_time (t))λ = ##\lambda \exp(−\lambda t)##
Hmm but why would that equation be relevant? Suppose you know what ##t## is and you're trying to find ##\lambda##, why would ##D(t)=\lambda\exp(-\lambda t)## be relevant?
 
tryingtolearn1 said:
Hmm but why would that equation be relevant? Suppose you know what ##t## is and you're trying to find ##\lambda##, why would ##D(t)=\lambda\exp(-\lambda t)## be relevant?
I see no suggestion that this is to do with finding λ. Rather, it assumes you have already determined λ and now wish to estimate the rate of decays in a sample at some future point.
 
  • Like
Likes tryingtolearn1
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top