Try looking up the literatures on the Born-Infield theory for the (highly non-trivial) proof of the following identity (in 4 dimensions)
- \mbox{Det} \left( g_{\mu\nu} + F_{\mu\nu}\right) = -g \left( 1 + \frac{1}{2} g^{\mu\rho}g^{\nu\sigma}F_{\mu\nu}F_{\rho\sigma} - ( \frac{1}{8} \epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma})^2 \right) , \ \ \ (1) where g = \mbox{Det} (g_{\alpha \beta}). Now, if that is your Lagrangian \mathcal{L}, then \frac{\partial \mathcal{L}}{\partial (\partial_{\alpha}A_{\beta})} = 2 \frac{\partial \mathcal{L}}{\partial F_{\alpha \beta}} , and the equation of motion is just \partial_{\alpha} \left( \frac{\partial \mathcal{L}}{\partial F_{\alpha \beta}} \right) = 0. So, from the identity (1), you find \partial_{\alpha} \left( F^{\alpha \beta} - \frac{1}{4} \left( F_{\mu\nu} ~^*\!F^{\mu\nu} \right) ~^*\!F^{\alpha\beta}\right) = 0, where ~^*\!F^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}.
You should have posted this in the Relativity forum.