MHB What is the result of evaluating this sequence challenge?

Click For Summary
The sequence of integers \( x_i \) is defined with \( x_i = i \) for \( 1 \leq i \leq 5 \) and \( x_i = (x_1 x_2 \cdots x_{i-1}) - 1 \) for \( i > 5 \). A correction was made regarding the definition's interval, acknowledging the need for clarity. Participants engaged in evaluating the expression \( x_1 x_2 \cdots x_{2011} - \sum_{i=1}^{2011} (x_i)^2 \). The discussion included thanks to a member for pointing out the error, and a solution was confirmed as correct. The thread highlights the importance of precise definitions in mathematical problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
A sequence of integers ${x_i}$ is defined as follows:

$x_i=i$ for all $1<i<5$ and

$x_i=(x_1x_2\cdots x_{i-1})-1$ for $i>5$.

Evaluate $\displaystyle x_1x_2\cdots x_{2011}-\sum_{i=1}^{2011} (x_i)^2$.
 
Mathematics news on Phys.org
anemone said:
A sequence of integers ${x_i}$ is defined as follows:

$x_i=i$ for all $1<i<5$ and

$x_i=(x_1x_2\cdots x_{i-1})-1$ for $i>5$.

Evaluate $\displaystyle x_1x_2\cdots x_{2011}-\sum_{i=1}^{2011} (x_i)^2$.

Hi MHB,

I want to apologize for not checking the validity of the interval for this sequence because the first function should be defined at $1\le i \le 5$. But I wouldn't have noticed it if Euge didn't let me know of it. Therefore, I owe Euge a thank, and perhaps a cup of coffee as well?:o

The problem should read:

$x_i=i$ for all $1\le i \le5$ and

$x_i=(x_1x_2\cdots x_{i-1})-1$ for $i>5$.

Evaluate $\displaystyle x_1x_2\cdots x_{2011}-\sum_{i=1}^{2011} (x_i)^2$.
 
anemone said:
Hi MHB,

I want to apologize for not checking the validity of the interval for this sequence because the first function should be defined at $1\le i \le 5$. But I wouldn't have noticed it if Euge didn't let me know of it. Therefore, I owe Euge a thank, and perhaps a cup of coffee as well?:o

The problem should read:

$x_i=i$ for all $1\le i \le5$ and

$x_i=(x_1x_2\cdots x_{i-1})-1$ for $i>5$.

Evaluate $\displaystyle x_1x_2\cdots x_{2011}-\sum_{i=1}^{2011} (x_i)^2$.

Ok, here is my solution.

We have

$\displaystyle x_1 \cdots x_{2011} -\sum_{i = 1}^{2011} (x_i)^2$

$\displaystyle = x_1 \cdots x_{2011} - \sum_{i = 1}^{5} i^2 - \sum_{i = 6}^{2011} [(x_i - 1)(x_i + 1) + 1]$

$\displaystyle = x_1 \cdots x_{2011} - 55 -\sum_{i = 6}^{2011} (x_i - 1)x_1 \cdots x_{i - 1} - 2006$

$\displaystyle = x_1 \cdots x_{2011} - \sum_{i = 6}^{2011} (x_1 \cdots x_i - x_1 \cdots x_{i - 1}) - 2061$

$\displaystyle = x_1 \cdots x_{2011} - x_1 \cdots x_{2011} + 5! -2061$

$\displaystyle = -1941$.
 
Last edited:
Hey Euge!:)

Thanks for participating and your answer is correct! Well done!(Yes)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K