What is the spiral shape produced by an attractive (1/r^2)sin(theta) force?

kmarinas86
Messages
974
Reaction score
1
I was wondering what shape a (1/r^2)sin(theta) force would produce between two bodies.

theta = angle between the distance between the two bodies and the velocity vector (90 degrees for a circular orbit).
 
Last edited:
Mathematics news on Phys.org
Here I broke it up into pieces:

r = distance from the origin

s = sin(atan(r*θ' / r'))

(A = constant)

r'' = A*s/r^2

System of equations:

r'' = A*s/r^2

r = (A*s/(r''))^0.5

I have no idea how to plot this. I know only as much as the fact that I can set initial values, but I don't know how to get from there to actually plotting the graph.
 
Last edited:
s = sin(atan(r*θ' / r'))
(A = constant)
r'' = A*s/r^2
System of equations:
r'' = A*s/r^2
r = (A*s/(r''))^0.5
r'' = A*s/r^2 and r = (A*s/(r''))^0.5 is the same equation.
So, you have one equation only. Eliminating s leads to :
r'' = A*sin(atan(r*θ' / r'))/r^2
Since the equation contains two unknows (r ans theta), it is not solvable.
The physical modeling is unfinished.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top