What is the Value of f(2009) in the Given Recursive Sequence?

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Sequence
Click For Summary
SUMMARY

The value of f(2009) in the recursive sequence defined by f(n+3) = (f(n) - 1) / (f(n) + 1) with the initial condition f(5) = 10 is determined to be 10. The sequence exhibits periodicity with a cycle of 4, as derived from the transformation a(n+2) = -1/a(n). Consequently, since 668 is divisible by 4, it follows that a(668) equals the initial value a(0), which is 10.

PREREQUISITES
  • Understanding of recursive sequences and their properties
  • Familiarity with difference equations
  • Knowledge of periodic functions and their characteristics
  • Basic algebraic manipulation and solving equations
NEXT STEPS
  • Explore the properties of periodic sequences in recursive functions
  • Study advanced techniques for solving nonlinear difference equations
  • Learn about the implications of periodicity in mathematical sequences
  • Investigate other examples of recursive sequences and their convergence behavior
USEFUL FOR

Mathematicians, students studying discrete mathematics, and anyone interested in the analysis of recursive sequences and difference equations.

Albert1
Messages
1,221
Reaction score
0
$f(5)=10$

$f(n+3)=\dfrac {f(n)-1}{f(n)+1},\,\, for \,\, all \,\,n\in N$

find f(2009)
 
Mathematics news on Phys.org
Re: find number of a sequence

Albert said:
$f(5)=10$

$f(n+3)=\dfrac {f(n)-1}{f(n)+1},\,\, for \,\, all \,\,n\in N$

find f(2009)
because of periodicity: f(5)=10, f(8)=9/11, f(11)=-1/10, f(14)=-11/9; f(17)=10, ...

f(2009)=10

.
 
Re: find number of a sequence

Albert said:
$f(5)=10$

$f(n+3)=\dfrac {f(n)-1}{f(n)+1},\,\, for \,\, all \,\,n\in N$

find f(2009)

An equivalent and more simple statement of the problem is: given the difference equation...

$$ a_{n+1}= \frac{a_{n}-1}{a_{n}+1}\ ,\ a_{0}=10\ (1)$$

... find $a_{668}$...

Before trying a 'direct attack' to the non linear d.e. (1) it is better to search that (1) has some periodic solution, i.e. a solution where $a_{n+k}=a_{n}$. Let's set $a_{n+k}=y$ and $a_{n}=x$. We start with k=1 we obtain ...

$$y= \frac{x-1}{x+1}\ (2)$$

... and imposing y=x we arrive to the equation...

$$ x^{2}+1=0\ (3)$$

... which has no real solutions. Setting k=2 we arrive to the [surprisingly simple...] equation...

$$y = - \frac{1}{x}\ (4)$$

... that pratically solves the problem. The (4) indeed indicates that the solution has periodicity 4 and, given $a_{0}$, we have...

$$a_{0}\ ,\ \frac{a_{0}-1}{a_{0}+1}\ ,\ - \frac{1}{a_{0}}\ ,\ -\frac {a_{0}+1}{a_{0}-1}\ , \ a_{0}\ ,\ ...\ (5)$$

In our case is $a_{0}=10$ so that the other terms are $a_{1}= \frac{9}{11}$, $a_{2}= - \frac{1}{10}$, and $a_{3}= - \frac{11}{9}$ . Now 668 is divisible by 4 so that is $a_{668}=a_{0}=10$...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 27 ·
Replies
27
Views
6K
  • · Replies 3 ·
Replies
3
Views
951
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K