MHB What is the Value of f(2009) in the Given Recursive Sequence?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Sequence
Click For Summary
The recursive sequence defined by f(n+3) = (f(n) - 1) / (f(n) + 1) with f(5) = 10 exhibits periodic behavior with a period of 4. The sequence can be expressed as a0 = 10, a1 = 9/11, a2 = -1/10, and a3 = -11/9. Since 668 is divisible by 4, the value of f(2009) corresponds to f(5), which is 10. Thus, the value of f(2009) is 10. The periodic nature of the sequence simplifies the calculation significantly.
Albert1
Messages
1,221
Reaction score
0
$f(5)=10$

$f(n+3)=\dfrac {f(n)-1}{f(n)+1},\,\, for \,\, all \,\,n\in N$

find f(2009)
 
Mathematics news on Phys.org
Re: find number of a sequence

Albert said:
$f(5)=10$

$f(n+3)=\dfrac {f(n)-1}{f(n)+1},\,\, for \,\, all \,\,n\in N$

find f(2009)
because of periodicity: f(5)=10, f(8)=9/11, f(11)=-1/10, f(14)=-11/9; f(17)=10, ...

f(2009)=10

.
 
Re: find number of a sequence

Albert said:
$f(5)=10$

$f(n+3)=\dfrac {f(n)-1}{f(n)+1},\,\, for \,\, all \,\,n\in N$

find f(2009)

An equivalent and more simple statement of the problem is: given the difference equation...

$$ a_{n+1}= \frac{a_{n}-1}{a_{n}+1}\ ,\ a_{0}=10\ (1)$$

... find $a_{668}$...

Before trying a 'direct attack' to the non linear d.e. (1) it is better to search that (1) has some periodic solution, i.e. a solution where $a_{n+k}=a_{n}$. Let's set $a_{n+k}=y$ and $a_{n}=x$. We start with k=1 we obtain ...

$$y= \frac{x-1}{x+1}\ (2)$$

... and imposing y=x we arrive to the equation...

$$ x^{2}+1=0\ (3)$$

... which has no real solutions. Setting k=2 we arrive to the [surprisingly simple...] equation...

$$y = - \frac{1}{x}\ (4)$$

... that pratically solves the problem. The (4) indeed indicates that the solution has periodicity 4 and, given $a_{0}$, we have...

$$a_{0}\ ,\ \frac{a_{0}-1}{a_{0}+1}\ ,\ - \frac{1}{a_{0}}\ ,\ -\frac {a_{0}+1}{a_{0}-1}\ , \ a_{0}\ ,\ ...\ (5)$$

In our case is $a_{0}=10$ so that the other terms are $a_{1}= \frac{9}{11}$, $a_{2}= - \frac{1}{10}$, and $a_{3}= - \frac{11}{9}$ . Now 668 is divisible by 4 so that is $a_{668}=a_{0}=10$...

Kind regards

$\chi$ $\sigma$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
2
Views
1K
Replies
1
Views
1K
Replies
27
Views
6K
Replies
11
Views
2K
Replies
4
Views
3K
Replies
4
Views
1K
Replies
1
Views
1K