What is the value of the expression given these equations?

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Expression Value
Click For Summary

Discussion Overview

The discussion revolves around a mathematical problem involving two equations and the task of finding the value of a specific expression. The equations relate variables \(x\), \(y\), \(z\), \(m\), \(n\), and \(p\) in a way that suggests a relationship between them. The scope includes mathematical reasoning and exploration of potential values derived from the given equations.

Discussion Character

  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • Participants present the equations: \(\dfrac{x}{m}+\dfrac{y}{n} +\dfrac{z}{p}=1\) and \(\dfrac{m}{x}+\dfrac{n}{y} +\dfrac{p}{z}=0\) as the basis for the problem.
  • There is a repeated request to find the value of the expression \(\dfrac{x^2}{m^2}+\dfrac{y^2}{n^2} +\dfrac{z^2}{p^2}\), indicating a focus on this specific mathematical inquiry.
  • One participant introduces a related question about whether the expression \(\dfrac{m^2}{x^2}+\dfrac{n^2}{y^2} +\dfrac{p^2}{z^2}\) can yield a fixed number, suggesting a potential exploration of relationships between the variables.

Areas of Agreement / Disagreement

There is no consensus on the value of the expressions being discussed, and participants have not yet provided solutions or resolved the inquiries posed.

Contextual Notes

The discussion does not clarify any assumptions or dependencies that may affect the interpretation of the equations or the expressions being evaluated.

Albert1
Messages
1,221
Reaction score
0
given :

$\dfrac {x}{m}+\dfrac{y}{n} +\dfrac {z}{p}=1$

$\dfrac {m}{x}+\dfrac{n}{y} +\dfrac {p}{z}=0$

find:

$\dfrac {x^2}{m^2}+\dfrac{y^2}{n^2} +\dfrac {z^2}{p^2}=?$
 
Mathematics news on Phys.org
Re: find value

Albert said:
given :

$\dfrac {x}{m}+\dfrac{y}{n} +\dfrac {z}{p}=1$

$\dfrac {m}{x}+\dfrac{n}{y} +\dfrac {p}{z}=0$

find:

$\dfrac {x^2}{m^2}+\dfrac{y^2}{n^2} +\dfrac {z^2}{p^2}=?$

Hello.
\dfrac {x^2}{m^2}+\dfrac{y^2}{n^2} +\dfrac {z^2}{p^2}=1

1º)

\dfrac {m}{x}+\dfrac{n}{y} +\dfrac {p}{z}=0

myz+nxz+pxy=0

(mnp)(myz+nxz+pxy)<br /> =0

mnpmyz+mnpnxz+mnppxy=0(*)

2º)

\dfrac {x}{m}+\dfrac{y}{n} +\dfrac {z}{p}=1

xnp+myp+mnz=mnp

(xnp+myp+mnz)^2=m^2n^2p^2

x^2n^2p^2+m^2y^2p^2+m^2n^2z^2+

+2xnpmyp+2xnpmnz+2mypmnz=m^2n^2p^2

For (*):

2xnpmyp+2xnpmnz+2mypmnz=0

Then:

x^2n^2p^2+m^2y^2p^2+m^2n^2z^2=m^2n^2p^2

\dfrac{x^2n^2p^2+m^2y^2p^2+m^2n^2z^2}{m^2n^2p^2}=1

\dfrac {x^2}{m^2}+\dfrac{y^2}{n^2} +\dfrac {z^2}{p^2}=1

Regards.
 
Hello, Albert!

\text{Given: }\:\dfrac {x}{m}+\dfrac{y}{n} +\dfrac {z}{p}=1

. . . . . . . \dfrac {m}{x}+\dfrac{n}{y} +\dfrac {p}{z}=0

\text{Find: }\:\dfrac {x^2}{m^2}+\dfrac{y^2}{n^2} +\dfrac {z^2}{p^2}
\text{Let: }\:a\,=\,\frac{x}{m},\;\;b \,=\, \frac{y}{n},\;\;c \,=\, \frac{z}{p}

\text{We have: }\:\begin{Bmatrix}a+b+c &amp;=&amp; 1 &amp; [1] \\ \frac{1}{a}+\frac{1}{b} + \frac{1}{c} &amp;=&amp; 0 &amp; [2] \end{Bmatrix}

\text{And we want: }\:a^2+b^2+c^2.\text{From [2]: }\:\frac{ab+bc+ac}{abc} \:=\:0 \quad\Rightarrow\quad ab + bc + ac \:=\:0

\text{Square [1]: }\: (a+b+c)^2 \:=\:1 ^2

. . a^2+2ab+2ac+b^2+2bc+c^2 \:=\:1

. . a^2+b^2+c^2 + 2\underbrace{(ab + bc + ac)}_{\text{This is }0} \:=\:1

\text{Therefore: }\:a^2+b^2+c^2 \:=\:1
 
Last edited by a moderator:
Albert said:
given :

$\dfrac {x}{m}+\dfrac{y}{n} +\dfrac {z}{p}=1$

$\dfrac {m}{x}+\dfrac{n}{y} +\dfrac {p}{z}=0$

find:

$\dfrac {x^2}{m^2}+\dfrac{y^2}{n^2} +\dfrac {z^2}{p^2}=?$

now the following value can be found (is it a fixed number)?
$\dfrac {m^2}{x^2}+\dfrac{n^2}{y^2} +\dfrac {p^2}{z^2}=?$
 

Similar threads

Replies
6
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
2K