MHB What is the value of the expression given these equations?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Expression Value
AI Thread Summary
The discussion revolves around solving for the expression $\dfrac{x^2}{m^2}+\dfrac{y^2}{n^2}+\dfrac{z^2}{p^2}$ given two equations: $\dfrac{x}{m}+\dfrac{y}{n}+\dfrac{z}{p}=1$ and $\dfrac{m}{x}+\dfrac{n}{y}+\dfrac{p}{z}=0$. Participants explore whether this expression yields a fixed numerical value. The conversation also touches on the related expression $\dfrac{m^2}{x^2}+\dfrac{n^2}{y^2}+\dfrac{p^2}{z^2}$. Overall, the focus is on deriving a solution based on the provided equations.
Albert1
Messages
1,221
Reaction score
0
given :

$\dfrac {x}{m}+\dfrac{y}{n} +\dfrac {z}{p}=1$

$\dfrac {m}{x}+\dfrac{n}{y} +\dfrac {p}{z}=0$

find:

$\dfrac {x^2}{m^2}+\dfrac{y^2}{n^2} +\dfrac {z^2}{p^2}=?$
 
Mathematics news on Phys.org
Re: find value

Albert said:
given :

$\dfrac {x}{m}+\dfrac{y}{n} +\dfrac {z}{p}=1$

$\dfrac {m}{x}+\dfrac{n}{y} +\dfrac {p}{z}=0$

find:

$\dfrac {x^2}{m^2}+\dfrac{y^2}{n^2} +\dfrac {z^2}{p^2}=?$

Hello.
\dfrac {x^2}{m^2}+\dfrac{y^2}{n^2} +\dfrac {z^2}{p^2}=1

1º)

\dfrac {m}{x}+\dfrac{n}{y} +\dfrac {p}{z}=0

myz+nxz+pxy=0

(mnp)(myz+nxz+pxy)<br /> =0

mnpmyz+mnpnxz+mnppxy=0(*)

2º)

\dfrac {x}{m}+\dfrac{y}{n} +\dfrac {z}{p}=1

xnp+myp+mnz=mnp

(xnp+myp+mnz)^2=m^2n^2p^2

x^2n^2p^2+m^2y^2p^2+m^2n^2z^2+

+2xnpmyp+2xnpmnz+2mypmnz=m^2n^2p^2

For (*):

2xnpmyp+2xnpmnz+2mypmnz=0

Then:

x^2n^2p^2+m^2y^2p^2+m^2n^2z^2=m^2n^2p^2

\dfrac{x^2n^2p^2+m^2y^2p^2+m^2n^2z^2}{m^2n^2p^2}=1

\dfrac {x^2}{m^2}+\dfrac{y^2}{n^2} +\dfrac {z^2}{p^2}=1

Regards.
 
Hello, Albert!

\text{Given: }\:\dfrac {x}{m}+\dfrac{y}{n} +\dfrac {z}{p}=1

. . . . . . . \dfrac {m}{x}+\dfrac{n}{y} +\dfrac {p}{z}=0

\text{Find: }\:\dfrac {x^2}{m^2}+\dfrac{y^2}{n^2} +\dfrac {z^2}{p^2}
\text{Let: }\:a\,=\,\frac{x}{m},\;\;b \,=\, \frac{y}{n},\;\;c \,=\, \frac{z}{p}

\text{We have: }\:\begin{Bmatrix}a+b+c &amp;=&amp; 1 &amp; [1] \\ \frac{1}{a}+\frac{1}{b} + \frac{1}{c} &amp;=&amp; 0 &amp; [2] \end{Bmatrix}

\text{And we want: }\:a^2+b^2+c^2.\text{From [2]: }\:\frac{ab+bc+ac}{abc} \:=\:0 \quad\Rightarrow\quad ab + bc + ac \:=\:0

\text{Square [1]: }\: (a+b+c)^2 \:=\:1 ^2

. . a^2+2ab+2ac+b^2+2bc+c^2 \:=\:1

. . a^2+b^2+c^2 + 2\underbrace{(ab + bc + ac)}_{\text{This is }0} \:=\:1

\text{Therefore: }\:a^2+b^2+c^2 \:=\:1
 
Last edited by a moderator:
Albert said:
given :

$\dfrac {x}{m}+\dfrac{y}{n} +\dfrac {z}{p}=1$

$\dfrac {m}{x}+\dfrac{n}{y} +\dfrac {p}{z}=0$

find:

$\dfrac {x^2}{m^2}+\dfrac{y^2}{n^2} +\dfrac {z^2}{p^2}=?$

now the following value can be found (is it a fixed number)?
$\dfrac {m^2}{x^2}+\dfrac{n^2}{y^2} +\dfrac {p^2}{z^2}=?$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top